login
A290026
Number of 3-cycles in the n-halved cube graph.
3
0, 0, 4, 32, 160, 640, 2240, 7168, 21504, 61440, 168960, 450560, 1171456, 2981888, 7454720, 18350080, 44564480, 106954752, 254017536, 597688320, 1394606080, 3229614080, 7428112384, 16978542592, 38587596800, 87241523200, 196293427200, 439697276928, 980863156224
OFFSET
1,3
COMMENTS
a(n) is the number of diagonals of length sqrt(3) in an n-cube. - Nigel Stepp, Oct 06 2019
LINKS
Eric Weisstein's World of Mathematics, Graph Cycle
Eric Weisstein's World of Mathematics, Halved Cube Graph
FORMULA
a(n) = 2^(n-1)*binomial(n,3).
a(n) = 8*a(n-1)-24*a(n-2)+32*a(n-3)-16*a(n-4).
G.f.: (4*x^3)/(-1 + 2*x)^4.
MATHEMATICA
Table[2^(n - 1) Binomial[n, 3], {n, 20}]
LinearRecurrence[{8, -24, 32, -16}, {0, 0, 4, 32}, 20]
CoefficientList[Series[(4 x^2)/(-1 + 2 x)^4, {x, 0, 20}], x]
CROSSREFS
Cf. A290027 (4-cycles), A290028 (5-cycles), A290029 (6-cycles).
Sequence in context: A270161 A270977 A270287 * A272511 A271415 A270619
KEYWORD
nonn,easy,changed
AUTHOR
Eric W. Weisstein, Jul 17 2017
STATUS
approved