login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the 2n-th derivative of the difference between the n-th tetration of x (power tower of order n) and its predecessor (or 0 if n=0) at x=1.
2

%I #27 Jun 02 2018 10:37:55

%S 1,0,8,900,224112,78775200,40518181440,28340179227360,

%T 26078095792869120,30544708065077606400,44428404658605222528000,

%U 78604530683773395984883200,166295474965751756924207462400,414658685362517268992110471680000,1203746810444949373635048911870976000

%N a(n) is the 2n-th derivative of the difference between the n-th tetration of x (power tower of order n) and its predecessor (or 0 if n=0) at x=1.

%H Alois P. Heinz, <a href="/A290023/b290023.txt">Table of n, a(n) for n = 0..100</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PowerTower.html">Power Tower</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Knuth%27s_up-arrow_notation">Knuth's up-arrow notation</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Tetration">Tetration</a>

%F a(n) = (2n)! * [x^(2n)] (x+1)^^n - (x+1)^^(n-1) for n>0, a(0) = 1.

%F a(n) = [(d/dx)^(2n) (x^^n - x^^(n-1))]_{x=1} for n>0, a(0) = 1.

%F a(n) = A277536(2n,n).

%p f:= proc(n) option remember; `if`(n<0, 0,

%p `if`(n=0, 1, (x+1)^f(n-1)))

%p end:

%p a:= n-> (2*n)!*coeff(series(f(n)-f(n-1), x, 2*n+1), x, 2*n):

%p seq(a(n), n=0..15);

%p # second Maple program:

%p b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,

%p -add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)*

%p (-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1)))

%p end:

%p a:= n-> b(2*n, n) -`if`(n=0, 0, b(2*n, n-1)):

%p seq(a(n), n=0..15);

%t f[n_] := f[n] = If[n < 0, 0, If[n == 0, 1, (x + 1)^f[n - 1]]];

%t a[n_] := (2*n)!*SeriesCoefficient[f[n] - f[n - 1], {x, 0, 2*n}];

%t Table[a[n], {n, 0, 15}]

%t (* Second program: *)

%t b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n - 1, j]*b[j, k]*Sum[Binomial[n - j, i]*(-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]];

%t a[n_] := b[2*n, n] - If[n == 0, 0, b[2*n, n - 1]];

%t Table[a[n], {n, 0, 15}] (* _Jean-François Alcover_, Jun 02 2018, from Maple *)

%Y Cf. A277536.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Nov 10 2017