The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290021 a(0) = 1; for n > 0, a(n) = a(k) + a(m) where binomial(k + m + 2, 2) - m = n and binomial(k + m + 2, 2) is the smallest triangular number larger than or equal to m. 1
 1, 2, 3, 3, 4, 4, 4, 4, 5, 5, 4, 5, 5, 6, 5, 5, 5, 6, 6, 6, 6, 5, 5, 6, 7, 6, 7, 6, 5, 5, 6, 7, 7, 7, 7, 6, 5, 6, 6, 7, 7, 8, 7, 7, 6, 6, 6, 7, 7, 7, 8, 8, 7, 7, 7, 6, 5, 7, 8, 7, 8, 8, 8, 7, 8, 7, 5, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 6, 6, 6, 7, 7, 8, 9, 8, 8, 8 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Rémy Sigrist, Table of n, a(n) for n = 0..10000 FORMULA a(n+1) = a(A002262(n)) + a(A025581(n)). - Rémy Sigrist, Feb 12 2021 EXAMPLE a(0) = 1. a(1) = a(0) + a(0) = 1 + 1 = 2. a(2) = a(0) + a(1) = 1 + 2 = 3. a(3) = a(1) + a(0) = 2 + 1 = 3. a(4) = a(0) + a(2) = 1 + 3 = 4. a(5) = a(1) + a(1) = 2 + 2 = 4. a(6) = a(2) + a(0) = 3 + 1 = 4. PROG (PARI) a(n) = {if(n==0, return(1)); my(s = ceil((-3 + sqrt(8*n+1))/ 2), b = binomial(s+2, 2), k = b - n, m = s - k); a(k) + a(m)} (PARI) a=vector(87); print1(a[u=1]=1); for (d=1, oo, for (n=1, d, print1(", "a[u++]=a[n]+a[d+1-n]); if (u==87, break (2)))) \\ Rémy Sigrist, Feb 12 2021 CROSSREFS Cf. A002262, A025581. Sequence in context: A230411 A029128 A303660 * A070941 A061775 A225634 Adjacent sequences:  A290018 A290019 A290020 * A290022 A290023 A290024 KEYWORD nonn,easy AUTHOR David A. Corneth, Aug 25 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 25 04:09 EDT 2021. Contains 345452 sequences. (Running on oeis4.)