login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{k=1..n-1} (3^k + 1).
4

%I #57 Sep 17 2024 11:02:41

%S 1,1,4,40,1120,91840,22408960,16358540800,35792487270400,

%T 234870301468364800,4623187014103292723200,

%U 272999193182799435304960000,48361261073946554365403054080000,25701205307660304745058529866383360000,40976048450930207702360695570691784048640000

%N a(n) = Product_{k=1..n-1} (3^k + 1).

%H G. C. Greubel, <a href="/A290000/b290000.txt">Table of n, a(n) for n = 0..50</a>

%F G.f. A(x) satisfies: A(x) = 1 + x * A(3*x) / (1 - x).

%F G.f.: Sum_{k>=0} 3^(k*(k - 1)/2) * x^k / Product_{j=0..k-1} (1 - 3^j*x).

%F a(0) = 1; a(n) = Sum_{k=0..n-1} 3^k * a(k).

%F a(n) ~ c * 3^(n*(n - 1)/2), where c = Product_{k>=1} (1 + 1/3^k) = 1.564934018567011537938849... = A132324.

%F a(n) = 3^(binomial(n+1,2))*(-1/3;1/3)_{n}, where (a;q)_{n} is the q-Pochhammer symbol. - _G. C. Greubel_, Feb 21 2021

%t Table[Product[3^k + 1, {k, 1, n - 1}], {n, 0, 14}]

%o (PARI) a(n) = prod(k=1, n-1, 3^k + 1); \\ _Michel Marcus_, Jun 06 2020

%o (Sage)

%o from sage.combinat.q_analogues import q_pochhammer

%o [1]+[3^(binomial(n,2))*q_pochhammer(n-1, -1/3, 1/3) for n in (1..20)] # _G. C. Greubel_, Feb 21 2021

%o (Magma)

%o [n lt 3 select 1 else (&*[3^j +1: j in [1..n-1]]): n in [1..20]]; // _G. C. Greubel_, Feb 21 2021

%Y Cf. A027871, A034472, A047656, A119600, A132324, A323716.

%Y Sequences of the form Product_{j=1..n-1} (m^j + 1): A000012 (m=0), A011782 (m=1), A028362 (m=2), this sequence (m=3), A309327 (m=4).

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Jun 06 2020