%I #25 Dec 07 2021 11:00:11
%S 10,11,2,55,21,10,3,10,33,26,10,21,10,5,21,10,55,10,8,2,2,3,7,78,55,3,
%T 34,2,21,78,10,68,10,41,57,10,55,10,55,21,10
%N Smallest positive k such that (n+1)^k + (-n)^k is divisible by a square greater than 1.
%C From _Robert Israel_, Sep 04 2017: (Start)
%C If (n+1)^k + (-n)^k is divisible by p^2 then so is (m+1)^k + (-m)^k
%C for m == n (mod p^2), so a(m) <= k for such m.
%C For example, a(n) = 2 if n == 3 or 21 (mod 25).
%C a(24) = 78 because 25^78 + (-24)^78 is divisible by 13^2.
%C a(42) <= 171 because 43^171 + (-42)^171 is divisible by 19^2.
%C (End)
%H Robert Israel, <a href="/A289985/a289985.txt">Upper bounds on a(n) for n = 1..2000</a>
%e a(1) = 10 because (1+1)^10 + (-1)^10 = 1025 is divisible by 5^2.
%p A289985 := proc(n)
%p local k;
%p for k from 1 do
%p if not issqrfree((n+1)^k+(-n)^k) then
%p return k;
%p end if;
%p end do:
%p end proc:
%p for n from 1 do
%p printf("%d,\n",A289985(n)) ;
%p end do: # _R. J. Mathar_, Sep 04 2017
%t Table[SelectFirst[Range[10^2], ! SquareFreeQ[(n + 1)^# + (-n)^#] &], {n, 23}] (* _Michael De Vlieger_, Sep 03 2017 *)
%Y Cf. A285929, A289629.
%Y Cf. A280302, A280547.
%K nonn,more
%O 1,1
%A _Juri-Stepan Gerasimov_, Sep 02 2017
%E a(24)-a(41) from _Giovanni Resta_, Sep 04 2017