Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jun 02 2024 14:05:41
%S 1,2,5,9,64,69,118,377,409,616,959,1093,1726,3034,5929,8140,11197,
%T 15293,15381,27811,58091,63757,72025,83921,122585,139913,166297,256301
%N Numbers k such that (85*10^k - 1)/3 is prime.
%C Numbers k such that the digits 28 followed by k occurrences of the digit 3 is prime (see Example section).
%C a(29) > 3*10^5.
%H Makoto Kamada, <a href="https://stdkmd.net/nrr">Factorization of near-repdigit-related numbers</a>.
%H Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/prime_difficulty.txt">Search for 283w</a>.
%e 2 is in this sequence because (85*10^2 - 1)/3 = 2833 is prime.
%e Initial terms and associated primes:
%e a(1) = 1, 283;
%e a(2) = 2, 2833;
%e a(3) = 5, 2833333;
%e a(4) = 9, 28333333333;
%e a(5) = 64, 283333333333333333333333333333333333333333333333333333333333333333; etc.
%t Select[Range[0, 100000], PrimeQ[(85*10^# - 1)/3] &]
%o (PARI) isok(k) = isprime((85*10^k - 1)/3); \\ _Michel Marcus_, Jul 16 2017
%Y Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.
%K nonn,more,hard
%O 1,2
%A _Robert Price_, Jul 15 2017
%E a(25)-a(27) from _Robert Price_, Feb 03 2020
%E a(28) from _Robert Price_, Jul 02 2023