Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Mar 02 2019 04:22:13
%S 1979,5399,11813,41213,42443,44249,47129,55799,57773,74699,79613,
%T 84299,88643,126473,143813,148913,167099,176489,178799,178889,209249,
%U 211859,237143,266663,267629,272249,272333,322229,344153,348443,354023,375083,391379,399263,422069,449549,521519,529673
%N Initial primes of 5 consecutive primes with consecutive gaps 8,6,4,2.
%C All terms = {23, 29} mod 30.
%C For initial primes of 5 consecutive primes with consecutive gaps 2,4,6,8 see A190814.
%C Number of terms less than 10^k: 0, 0, 0, 2, 13, 65, 317, 1563, 8671, 50643, ..., . - _Robert G. Wilson v_, Dec 07 2017
%H Robert G. Wilson v, <a href="/A289907/b289907.txt">Table of n, a(n) for n = 1..10000</a> (first 3114 terms from Muniru A Asiru)
%e Prime(299..303) = { 1979, 1987, 1993, 1997, 1999 } and 1979 + 8 = 1987, 1987 + 6 = 1993, 1993 + 4 = 1997, 1997 + 2 = 1999.
%e Also, prime(5852..5856) = { 57773, 57781, 57787, 57791, 57793 } and 5773 + 8 = 57781, 57781 + 6 = 57787, 57787 + 4 = 57791, 57791 + 2 = 57793.
%t s = Prepend[Differences@ #, First@ #] & /@ Partition[Prime@ Range[10^5], 5, 1]; Select[s, Drop[#, 1] == Range[8, 2, -2] &][[All, 1]] (* _Michael De Vlieger_, Jul 14 2017 *)
%t p = {2, 3, 5, 7, 11}; lst = {}; While[ p[[1]] < 530000, If[ Differences@ p == {8, 6, 4, 2}, AppendTo[ lst, p[[1]] ]]; p = Join[Rest@ p, {NextPrime[ p[[-1]]] }]]; lst (* _Robert G. Wilson v_, Dec 07 2017 *)
%o (GAP)
%o I:=[8,6,4,2];;
%o P:=Filtered([1..1000000],IsPrime);;
%o P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);; Collected(last);;
%o P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3]]);;
%o P3:=List(Positions(P2,I),i->P[i]);
%o (PARI) is(n) = my(q); forstep(i=8,2,-2,q=nextprime(n+1); if(q-n!=i,return(0)); n=q); return(1) \\ _David A. Corneth_, Jul 23 2017
%Y Cf. A078847, A153419, A190814, A190817, A190819, A190838.
%K nonn
%O 1,1
%A _Muniru A Asiru_, Jul 14 2017