Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Aug 29 2023 10:26:41
%S 1,1,3,9,135,2025,212625,22325625,21097715625,19937341265625,
%T 207248662456171875,2154349846231906640625,
%U 291128066470548703880859375,39341591262497599098939931640625,79746389028864195813528714933837890625
%N Number of maximal matchings in the n-triangular honeycomb rook graph.
%C Also the number of maximum matchings for n > 1.
%C The n-triangular honeycomb rook graph is the disjoint union of the complete graphs K_k for k in {1..n}. In terms of a triangular chessboard it is the graph for a chesspiece that is constrained to move on a single axis. - _Andrew Howroyd_, Jul 17 2017
%H Andrew Howroyd, <a href="/A289900/b289900.txt">Table of n, a(n) for n = 1..50</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Matching.html">Matching</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MaximalIndependentEdgeSet.html">Maximal Independent Edge Set</a>
%F a(n) = Product_{k=1..n} A001147(ceiling(k/2)). - _Andrew Howroyd_, Jul 17 2017
%F a(n) ~ A * 2^(1/3 + n/2) * n^(1/(15/2 + 9*(-1)^n/2) + n/2 + n^2/4) / exp(1/12 + n/2 + 3*n^2/8), where A = A074962 is the Glaisher-Kinkelin constant. - _Vaclav Kotesovec_, Aug 29 2023
%t MapAt[# - 1 &, #, 1] &@ FoldList[Times, Array[(2 Ceiling[#/2] - 1)!! &, 15]] (* _Michael De Vlieger_, Jul 18 2017 *)
%t FoldList[Times, Table[(k - Mod[k - 1, 2])!!, {k, 15}]] (* _Eric W. Weisstein_, Jul 19 2017 *)
%t Table[Product[(k - Mod[k - 1, 2])!!, {k, n}], {n, 15}] (* _Eric W. Weisstein_, Jul 19 2017 *)
%t Table[2^(n (n + 2)/4 - 1/12) E^(-1/4) Pi^(-(n + 1)/2) Glaisher^3 If[Mod[n, 2] == 0, BarnesG[(3 + n)/2]^2, 2^(1/4) BarnesG[n/2 + 1] BarnesG[n/2 + 2]], {n, 15}] (* _Eric W. Weisstein_, Jul 19 2017 *)
%o (PARI)
%o a(n)=prod(k=1,n, k!/((k\2)!*2^(k\2))); \\ _Andrew Howroyd_, Jul 17 2017
%o (Python)
%o from sympy import factorial2, ceiling
%o from operator import mul
%o def a001147(n):
%o return factorial2(2*n - 1)
%o def a(n):
%o return reduce(mul, [a001147(ceiling(k/2)) for k in range(1, n + 1)])
%o print([a(n) for n in range(1, 31)]) # _Indranil Ghosh_, Jul 18 2017, after PARI code
%Y Cf. A289897.
%K nonn
%O 1,3
%A _Eric W. Weisstein_, Jul 14 2017
%E Terms a(11) and beyond from _Andrew Howroyd_, Jul 17 2017
%E a(1) changed to 1 by _N. J. A. Sloane_, Jul 18 2017