%I #14 Dec 07 2019 12:18:29
%S 0,2,1,6,3,3,8,7,5,4,18,9,9,6,9,20,19,11,10,11,10,24,21,21,12,15,12,
%T 12,26,25,23,22,17,16,14,13,54,27,27,24,27,18,18,15,27,56,55,29,28,29,
%U 28,20,19,29,28,60,57,57,30,33,30,30,21,33,30,30,62,61,59
%N Square array T(n,k) (n>=0, k>=0) read by antidiagonals downwards: T(n,k) = A005836(n) + 2*A005836(k).
%C If n and k have no common one bit in base 2 representation (n AND k = 0), then n = A289813(T(n,k)) and k = A289814(T(n,k)).
%C This sequence, when restricted to the pairs of numbers without common bits in base 2 representation, is the inverse of the function n -> (A289813(n), A289814(n)).
%H Rémy Sigrist, <a href="/A289869/b289869.txt">First 100 antidiagonals of array, flattened</a>
%e The table begins:
%e x\y: 0 1 2 3 4 5 6 7 8 9 ...
%e 0: 0 2 6 8 18 20 24 26 54 56 ...
%e 1: 1 3 7 9 19 21 25 27 55 57 ...
%e 2: 3 5 9 11 21 23 27 29 57 59 ...
%e 3: 4 6 10 12 22 24 28 30 58 60 ...
%e 4: 9 11 15 17 27 29 33 35 63 65 ...
%e 5: 10 12 16 18 28 30 34 36 64 66 ...
%e 6: 12 14 18 20 30 32 36 38 66 68 ...
%e 7: 13 15 19 21 31 33 37 39 67 69 ...
%e 8: 27 29 33 35 45 47 51 53 81 83 ...
%e 9: 28 30 34 36 46 48 52 54 82 84 ...
%e ...
%o (PARI) T(n,k) = fromdigits(binary(n),3) + 2*fromdigits(binary(k),3)
%o (Python)
%o def T(n, k): return int(bin(n)[2:], 3) + 2*int(bin(k)[2:], 3)
%o for n in range(11): print [T(k, n - k) for k in range(n + 1)] # _Indranil Ghosh_, Aug 03 2017
%Y Cf. A005836, A289813, A289814.
%K nonn,tabl,base
%O 1,2
%A _Rémy Sigrist_, Jul 14 2017