login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

p-INVERT of the Lucas numbers (A000032), where p(S) = 1 - S - S^2.
2

%I #22 Aug 19 2017 13:32:07

%S 2,9,35,146,593,2428,9911,40495,165399,675637,2759792,11273144,

%T 46048100,188095781,768327108,3138436438,12819777601,52365789305,

%U 213901984464,873739509697,3569021260182,14578615958179,59550231769665,243248749683441,993614171826023

%N p-INVERT of the Lucas numbers (A000032), where p(S) = 1 - S - S^2.

%C Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the INVERT transform of s, so that p-INVERT is a generalization of the INVERT transform (e.g., A033453).

%C See A289780 for a guide to related sequences.

%H Clark Kimberling, <a href="/A289782/b289782.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4, 2, -7, 1)

%F G.f.: (-2 - x + 5 x^2 - 2 x^3)/(-1 + 4 x + 2 x^2 - 7 x^3 + x^4).

%F a(n) = 4*a(n-1) + 2*a(n-2) - 7*a(n-3) + a(n-4).

%t z = 60; s = (2 - x) x/(1 - x - x^2); p = 1 - s - s^2;

%t Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000032 *)

%t Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289782 *)

%Y Cf. A000032, A289780.

%K nonn,easy

%O 0,1

%A _Clark Kimberling_, Aug 10 2017