login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least k such that the sum of the first n divisors of k is a prime number.
5

%I #25 Sep 16 2017 03:15:56

%S 2,4,30,16,84,36,60,144,144,144,144,210,324,360,630,756,756,576,660,

%T 840,840,2040,900,900,2304,1980,1980,1980,4320,5184,3300,4620,5460,

%U 7056,3960,4680,2520,3600,3600,3600,10080,8100,3600,6300,9900,7920,11088,14400

%N Least k such that the sum of the first n divisors of k is a prime number.

%C The corresponding primes are 3, 7, 11, 31, 23, 37, 43, 61, 79, 103, 139, 191, 523, 167, 263, 347, 431, 787, 641, ...

%C The squares in the sequence are 4, 16, 36, 144, 324, 576, 900, 2304, 3600, 5184, 7056, 8100, 14400, ...

%H Chai Wah Wu, <a href="/A289776/b289776.txt">Table of n, a(n) for n = 2..1000</a>

%e a(4)=30 because the sum of the first 4 divisors of 30 is 1 + 2 + 3 + 5 = 11, which is prime, and there is no integer below 30 with this property.

%p with(numtheory):nn:=10^6:

%p for n from 2 to 50 do:

%p ii:=0:

%p for k from 2 to nn while(ii=0) do:

%p x:=divisors(k):n0:=nops(x):

%p for l from 1 to n0 while(ii=0) do:

%p p:=sum('x[i]', 'i'=1..l):

%p if type(p,prime)=true and l=n

%p then

%p ii:=1:printf (`%d %d \n`,n,k):

%p else fi:

%p od:

%p od:

%p od:

%t Table[k = 1; While[Nand[Length@ # >= n, PrimeQ@ Total@ Take[PadRight[#, n], n]] &@ Divisors@ k, k++]; k, {n, 2, 49}] (* _Michael De Vlieger_, Jul 12 2017 *)

%o (PARI) a(n) = k=1; while((d=divisors(k)) && ((#d<n) || !isprime(sum(j=1, n, d[j]))), k++); k; \\ _Michel Marcus_, Jul 12 2017

%o (Python)

%o from sympy import divisors, isprime

%o def A289776(n):

%o i = 1

%o while len(divisors(i)) < n or not isprime(sum(divisors(i)[:n])):

%o i += 1

%o return i # _Chai Wah Wu_, Aug 05 2017

%Y Cf. A000040, A027750, A240698.

%K nonn

%O 2,1

%A _Michel Lagneau_, Jul 12 2017