login
A289633
a(n) = 6 * Sum_{d|n} d * A110163(d).
2
-1440, 319680, -73733760, 17014849920, -3926422987200, 906079372542720, -209091033317387520, 48250806224270918400, -11134577434408058898720, 2569466177758810678838400, -592941804710481150566417280, 136829971461225574971638023680
OFFSET
1,1
LINKS
Ken Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series, CBMS Regional Conference Series in Mathematics, vol. 102, American Mathematical Society, Providence, RI, 2004.
FORMULA
a(n) == A000594(n) mod 11.
a(n) ~ 6 * (-1)^n * exp(Pi*sqrt(3)*n). - Vaclav Kotesovec, Jul 09 2017
EXAMPLE
G.f.: -1440*q + 319680*q^2 - 73733760*q^3 + 17014849920*q^4 - 3926422987200*q^5 + ...
a(1) = 6 * (1 * A110163(1)) = -1440,
a(2) = 6 * (1 * A110163(1) + 2 * A110163(2)) = 319680,
a(3) = 6 * (1 * A110163(1) + 3 * A110163(3)) = -73733760.
CROSSREFS
Cf. A000594, A110163, A126839 (A000594(n) mod 11), A289636.
Sequence in context: A187193 A223108 A023102 * A282330 A207213 A207207
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jul 08 2017
STATUS
approved