login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A002322(n)/A007947(A034380(n)).
4

%I #21 Mar 07 2020 14:57:16

%S 1,1,2,2,4,2,6,1,6,4,10,1,12,6,2,2,16,6,18,2,3,10,22,1,20,12,18,3,28,

%T 2,30,4,5,16,6,3,36,18,6,2,40,3,42,5,6,22,46,2,42,20,8,6,52,18,10,3,9,

%U 28,58,2,60,30,1,8,6,5,66,8,11,6,70,3,72,36,10,9,15,6,78,2,54,40,82,3,8,42,14,5,88,6,2,11,15,46

%N a(n) = A002322(n)/A007947(A034380(n)).

%H Antti Karttunen, <a href="/A289624/b289624.txt">Table of n, a(n) for n = 1..65536</a>

%F a(n) = A002322(n) / A007947(A034380(n)) = A002322(n) / A007947(A000010(n) / A002322(n)).

%p with(numtheory):

%p rad := n -> ilcm(op(factorset(n))):

%p a := n -> lambda(n)/rad(phi(n)/lambda(n)):

%p seq(a(n), n=1..94); # _Peter Luschny_, Jul 17 2017

%t a007947[n_]:=Last@ Select[Divisors[n], SquareFreeQ[#] &]; Table[Numerator[CarmichaelLambda[n]/a007947[EulerPhi[n]/CarmichaelLambda[n]]], {n, 100}] (* _Indranil Ghosh_, Jul 17 2017 *)

%o (PARI)

%o A002322(n) = lcm(znstar(n)[2]); \\ This function from _Charles R Greathouse IV_, Aug 04 2012

%o A007947(n) = factorback(factorint(n)[, 1]); \\ This function from _Andrew Lelechenko_, May 09 2014

%o A289624(n) = A002322(n)/A007947(eulerphi(n)/A002322(n));

%o (Sage)

%o from sage.crypto.util import carmichael_lambda

%o def A007947(n): return mul(p for p in prime_divisors(n))

%o def A000010(n): return euler_phi(n)

%o def A002322(n): return carmichael_lambda(n)

%o def A289624(n): return A002322(n)/A007947(A000010(n)/A002322(n))

%o print([A289624(n) for n in (1..94)]) # _Peter Luschny_, Jul 17 2017

%Y Cf. A000010, A002322, A007947, A034380, A080400.

%K nonn

%O 1,3

%A _Antti Karttunen_, Jul 17 2017