login
Related to number of mesh patterns of length 2 that avoid the pattern 321.
0

%I #8 May 14 2020 05:13:49

%S 1,1,1,2,5,15,48,159,538,1850,6446

%N Related to number of mesh patterns of length 2 that avoid the pattern 321.

%H Shishuo Fu, Guo-Niu Han, and Zhicong Lin, <a href="https://arxiv.org/abs/2005.06354">k-arrangements, statistics and patterns</a>, arXiv:2005.06354 [math.CO], 2020. Mentions this sequence.

%H Murray Tannock, <a href="https://skemman.is/bitstream/1946/25589/1/msc-tannock-2016.pdf">Equivalence classes of mesh patterns with a dominating pattern</a>, MSc Thesis, Reykjavik Univ., May 2016. See Appendix B2.

%K nonn,more

%O 1,4

%A _N. J. A. Sloane_, Jul 08 2017