login
Number of Dyck paths of semilength 5*n and height n.
2

%I #10 Jul 14 2017 07:20:59

%S 1,1,511,497845,517884748,517500496981,492342898340494,

%T 450205866074148509,399858332322926629152,347831920544342751131378,

%U 298149337418229660486879546,252909751775727886411508895575,212950273659595164912087912232227

%N Number of Dyck paths of semilength 5*n and height n.

%H Alois P. Heinz, <a href="/A289475/b289475.txt">Table of n, a(n) for n = 0..343</a>

%F a(n) ~ 5^(10*n + 1/2) / (2^(4*n + 3/2) * 3^(6*n + 7/2) * sqrt(Pi*n)). - _Vaclav Kotesovec_, Jul 14 2017

%p b:= proc(x, y, k) option remember;

%p `if`(x=0, 1, `if`(y>0, b(x-1, y-1, k), 0)+

%p `if`(y < min(x-1, k), b(x-1, y+1, k), 0))

%p end:

%p a:= n-> `if`(n=0, 1, b(10*n, 0, n)-b(10*n, 0, n-1)):

%p seq(a(n), n=0..20);

%t b[x_, y_, k_]:=b[x, y, k]=If[x==0, 1, If[y>0, b[x - 1, y - 1, k], 0] + If[y<Min[x - 1, k], b[x - 1, y + 1, k], 0]]; a[n_]:=a[n]=If[n==0, 1, b[10n, 0, n] - b[10n, 0, n - 1]]; Table[a[n], {n, 0, 20}] (* _Indranil Ghosh_, Jul 08 2017 *)

%Y Column k=5 of A289481.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Jul 06 2017