login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A289261 Coefficients in the expansion of 1/([r]-[2r]x+[3r]x^2-...); [ ]=floor, r=13/8. 2
1, 3, 5, 9, 17, 30, 52, 91, 160, 281, 494, 871, 1537, 2711, 4782, 8437, 14885, 26258, 46320, 81712, 144145, 254277, 448555, 791273, 1395843, 2462330, 4343664, 7662429, 13516885, 23844416, 42062667, 74200520, 130893196, 230901729, 407321472, 718534172 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Conjecture: the sequence is strictly increasing.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-2,1,-2,2).

FORMULA

G.f.: 1/(Sum_{k>=0} [(k+1)*r)](-x)^k), where r = 13/8 and [ ] = floor.

G.f.: (1 - x)*(1 + x)^2*(1 + x^2)*(1 + x^4) / (1 - 2*x + x^2 - 2*x^3 + 2*x^4 - x^5 + 2*x^6 - 2*x^7). - Colin Barker, Jul 14 2017

MATHEMATICA

r = 13/8;

u = 1000; (* # initial terms from given series *)

v = 100;   (* # coefficients in reciprocal series *)

CoefficientList[Series[1/Sum[Floor[r*(k + 1)] (-x)^k, {k, 0, u}], {x, 0, v}], x]

PROG

(PARI) Vec((1 - x)*(1 + x)^2*(1 + x^2)*(1 + x^4) / (1 - 2*x + x^2 - 2*x^3 + 2*x^4 - x^5 + 2*x^6 - 2*x^7) + O(x^50)) \\ Colin Barker, Jul 20 2017

CROSSREFS

Cf. A078140 (includes guide to related sequences), A289266.

Sequence in context: A288234 A288233 A288232 * A143373 A282184 A102475

Adjacent sequences:  A289258 A289259 A289260 * A289262 A289263 A289264

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Jul 14 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 14:53 EDT 2020. Contains 333089 sequences. (Running on oeis4.)