login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289146
Numbers with decimal expansion d_1,d_2,...,d_k that are divisible by sigma_0(d_k) + sigma_1(d_k-1) + ... + sigma_k-1(d_1).
1
1, 2, 8, 9, 12, 15, 24, 25, 28, 45, 54, 85, 111, 112, 128, 133, 153, 165, 192, 198, 228, 288, 294, 312, 342, 416, 432, 448, 481, 527, 528, 638, 828, 891, 1115, 1127, 1134, 1176, 1215, 1224, 1245, 1278, 1344, 1431, 1472, 1482, 1519, 1652, 1674, 1976, 2114, 2147, 2178, 2184
OFFSET
1,2
COMMENTS
sigma_k(n) is the sum of the k-th powers of the divisors of n.
LINKS
EXAMPLE
25 is in the sequence as 25 is divisible by sigma_0(5) + sigma_1(2) = 2 + 3 = 5.
MATHEMATICA
f[n_]:=Reverse[IntegerDigits[n]];
g[n_]:=Sum[DivisorSigma[i-1, f[n][[i]]], {i, 1, Length[f[n]]}];
Select[Range[10000], Divisible[#, g[#]]&]
ds[n_]:=Total[DivisorSigma[#[[2]], #[[1]]]&/@Thread[{IntegerDigits[ n], Range[ IntegerLength[n]-1, 0, -1]}]]; Select[Range[3000], Divisible[ #, ds[#]]&] (* Harvey P. Dale, Jul 16 2018 *)
PROG
(PARI) isok(n) = my(d = Vecrev(digits(n))); if (vecmin(d), n % sum(k=1, #d, sigma(d[k], k-1)) == 0); \\ Michel Marcus, Jun 26 2017
CROSSREFS
Subsequence of A052382.
Sequence in context: A020676 A086678 A359771 * A294374 A066550 A162952
KEYWORD
base,nonn
AUTHOR
Ivan N. Ianakiev, Jun 26 2017
STATUS
approved