login
Triangle read by rows: T(n,k) = (k + 1)*prime(n) + k for n > 0, 0 <= k <= n, and with T(0,0) = 1.
2

%I #41 Aug 04 2024 20:19:59

%S 1,2,5,3,7,11,5,11,17,23,7,15,23,31,39,11,23,35,47,59,71,13,27,41,55,

%T 69,83,97,17,35,53,71,89,107,125,143,19,39,59,79,99,119,139,159,179,

%U 23,47,71,95,119,143,167,191,215,239,29,59,89,119,149,179,209,239,269,299,329

%N Triangle read by rows: T(n,k) = (k + 1)*prime(n) + k for n > 0, 0 <= k <= n, and with T(0,0) = 1.

%H G. C. Greubel, <a href="/A289108/b289108.txt">Rows n = 0..50 of the triangle, flattened</a>

%e Triangle begins:

%e 1;

%e 2, 5;

%e 3, 7, 11;

%e 5, 11, 17, 23;

%e 7, 15, 23, 31, 39;

%e 11, 23, 35, 47, 59, 71;

%e 13, 27, 41, 55, 69, 83, 97;

%e 17, 35, 53, 71, 89, 107, 125, 143;

%e 19, 39, 59, 79, 99, 119, 139, 159, 179;

%e 23, 47, 71, 95, 119, 143, 167, 191, 215, 239;

%e ...

%t Join[{1}, T[n_,k_] := (k + 1) Prime[n] + k; Table[T[n, k], {n, 10}, {k, 0, n}]//Flatten]

%o (Magma) /* As triangle (here NthPrime(0)=1) */ [[(k+1)*NthPrime(n)+k: k in [0..n]]: n in [0.. 15]];

%o (SageMath)

%o def A289108(n,k): return 1 if n==0 else (k+1)*nth_prime(n) +k

%o flatten([[A289108(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Aug 04 2024

%Y Cf. A000040, A008578, A072055.

%K nonn,tabl

%O 0,2

%A _Vincenzo Librandi_, Sep 02 2017

%E Definition corrected by _Bruno Berselli_, Sep 06 2017