login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Exponents a(1), a(2), ... such that E_10, 1 - 264*q - 135432*q^2 + ... (A013974) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ... .
9

%I #25 Mar 08 2018 06:40:56

%S 264,170148,47083784,21265517460,8675419078920,3954919534878884,

%T 1798749087973466376,846151096977050604564,402076970410851910136072,

%U 193920175271783317402925220,94372564731126150526919627016,46330721199213296384252696382356

%N Exponents a(1), a(2), ... such that E_10, 1 - 264*q - 135432*q^2 + ... (A013974) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ... .

%C This sequence is related to the identity: E_4*E_6 = E_10.

%H Seiichi Manyama, <a href="/A289024/b289024.txt">Table of n, a(n) for n = 1..367</a>

%F a(n) = A110163(n) + A288851(n) = 20 + (1/n) * (Sum_{d|n} A008683(n/d) * (1/3 * A288261(d) + 1/2 * A288840(d))).

%F a(n) = (1/n) * Sum_{d|n} A008683(n/d) * A289639(d). - _Seiichi Manyama_, Jul 09 2017

%F a(n) ~ exp(2*Pi*n) / n. - _Vaclav Kotesovec_, Mar 08 2018

%Y Cf. A288968 (k=2), A110163 (k=4), A288851 (k=6), A288471 (k=8), this sequence (k=10), A288990/A288989 (k=12), A289029 (k=14).

%Y Cf. A008683, A288261 (E_6/E_4), A288840 (E_8/E_6), A289639.

%K nonn

%O 1,1

%A _Seiichi Manyama_, Jun 22 2017