Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jan 10 2020 05:30:49
%S 4,5,15,845,403227665,64175114443109790962237345,
%T 264288160993294964501375691029638701718807009656135518176301450923295365341665
%N Number of maximal independent vertex sets and minimal vertex covers in the n-Apollonian network.
%C Term a(8) has 233 decimal digits.
%C The size of the largest maximal independent vertex set, the independence number, is given by 3^(n-1). For n > 1, the size of the smallest such set, the independent domination number, is given by 3^(n-2).
%C Also, for n > 1 the number of independent vertex sets and vertex covers in the (n-1)-Apollonian network.
%H Andrew Howroyd, <a href="/A289021/b289021.txt">Table of n, a(n) for n = 1..9</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ApollonianNetwork.html">Apollonian Network</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IndependentVertexSet.html">Independent Vertex Set</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MaximalIndependentVertexSet.html">Maximal Independent Vertex Set</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MinimalVertexCover.html">Minimal Vertex Cover</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/VertexCover.html">Vertex Cover</a>
%t {1, 3} . # & /@ NestList[Function[{t, u}, {t^3 + u^3, t u^2}] @@ # &, {1, 1}, 6] (* _Eric W. Weisstein_, Sep 27 2017 *)
%o (PARI) \\ here t0..t1 are for 0..1 outside vertices included in set
%o T(t0,t1,x) = {[t0^3+t1^3*x, t0*t1^2]}
%o p(n,x)={my(v=[x,1]); for(i=2,n,v=T(v[1],v[2],x)); v[1]+3*v[2]*x}
%o a(n)=p(n,1);
%Y Cf. A291773.
%K nonn
%O 1,1
%A _Andrew Howroyd_, Sep 01 2017