login
Define the exponents b(1), b(2), ... such that E_12 is equal to (1-q)^b(1) (1-q^2)^b(2) (1-q^3)^b(3) ... . a(n) = b(n) * A288989(n).
6

%I #16 Jun 21 2017 13:09:11

%S -65520,-90598009320,442356959924880,4181653887366701917080,

%T -42458488603945952980072176,-254774947034575235293755006524520,

%U 3880639008647135220484579615019041680,17460929863645555627595091312548802016985880

%N Define the exponents b(1), b(2), ... such that E_12 is equal to (1-q)^b(1) (1-q^2)^b(2) (1-q^3)^b(3) ... . a(n) = b(n) * A288989(n).

%F b(n) = a(n)/A288989(n) = 24 + (1/n) * Sum_{d|n} A008683(n/d) * A288472(d)/A288989(d).

%e b(1) = 24 + 1/1 * A008683(1/1) * A288472(1)/A288989(1) = 24 + 1/1 * (-82104/691) = -65520/691,

%e b(2) = 24 + 1/2 * (A008683(2/1) * A288472(1)/A288989(1) + A008683(2/2) * A288472(2)/A288989(2)) = 24 + 1/2 * (82104/691 - 181275671592/477481) = -90598009320/477481.

%Y Cf. A288989.

%Y Cf. A288968 (k=2), A110163 (k=4), A288851 (k=6), A288471 (k=8).

%K sign

%O 1,1

%A _Seiichi Manyama_, Jun 21 2017