login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288962
Number of 4-cycles in the n X n rook graph.
3
0, 1, 9, 60, 250, 765, 1911, 4144, 8100, 14625, 24805, 39996, 61854, 92365, 133875, 189120, 261256, 353889, 471105, 617500, 798210, 1018941, 1285999, 1606320, 1987500, 2437825, 2966301, 3582684, 4297510, 5122125, 6068715, 7150336, 8380944, 9775425, 11349625, 13120380, 15105546, 17324029, 19795815, 22542000
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Graph Cycle
Eric Weisstein's World of Mathematics, Rook Graph
FORMULA
a(n) = n*binomial(n,2)*(n^2-4*n+5)/2.
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6).
G.f.: (x^2*(1+3*x+21*x^2+5*x^3))/(-1+x)^6.
MATHEMATICA
Table[n^2 (n - 1) (n^2 - 4 n + 5)/4, {n, 20}]
Table[n Binomial[n, 2] (n^2 - 4 n + 5)/2, {n, 20}]
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 9, 60, 250, 765}, 20]
CoefficientList[Series[(x (1 + 3 x + 21 x^2 + 5 x^3))/(-1 + x)^6, {x, 0, 20}], x]
PROG
(Magma) [n^2*(n-1)*(n^2-4*n+5)/4 : n in [1..50]]; // Wesley Ivan Hurt, Apr 23 2021
CROSSREFS
Cf. A288961 (3-cycles), A288963 (5-cycles), A288960 (6-cycles).
Sequence in context: A098327 A118674 A268972 * A074431 A268965 A081904
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Jun 20 2017
STATUS
approved