The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A288962 Number of 4-cycles in the n X n rook graph. 3
 0, 1, 9, 60, 250, 765, 1911, 4144, 8100, 14625, 24805, 39996, 61854, 92365, 133875, 189120, 261256, 353889, 471105, 617500, 798210, 1018941, 1285999, 1606320, 1987500, 2437825, 2966301, 3582684, 4297510, 5122125, 6068715, 7150336, 8380944, 9775425, 11349625, 13120380, 15105546, 17324029, 19795815, 22542000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Eric Weisstein's World of Mathematics, Graph Cycle Eric Weisstein's World of Mathematics, Rook Graph Index entries for linear recurrences with constant coefficients, signature (6, -15, 20, -15, 6, -1). FORMULA a(n) = n*binomial(n,2)*(n^2-4*n+5)/2. a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). G.f.: (x^2*(1+3*x+21*x^2+5*x^3))/(-1+x)^6. MATHEMATICA Table[n^2 (n - 1) (n^2 - 4 n + 5)/4, {n, 20}] Table[n Binomial[n, 2] (n^2 - 4 n + 5)/2, {n, 20}] LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 9, 60, 250, 765}, 20] CoefficientList[Series[(x (1 + 3 x + 21 x^2 + 5 x^3))/(-1 + x)^6, {x, 0, 20}], x] PROG (MAGMA) [n^2*(n-1)*(n^2-4*n+5)/4 : n in [1..50]]; // Wesley Ivan Hurt, Apr 23 2021 CROSSREFS Cf. A288961 (3-cycles), A288963 (5-cycles), A288960 (6-cycles). Sequence in context: A098327 A118674 A268972 * A074431 A268965 A081904 Adjacent sequences:  A288959 A288960 A288961 * A288963 A288964 A288965 KEYWORD nonn,easy,changed AUTHOR Eric W. Weisstein, Jun 20 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 6 01:51 EDT 2021. Contains 343579 sequences. (Running on oeis4.)