login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of surjective linear mappings from an n-dimensional vector space over F_2 onto a k-dimensional vector space, n>=0, 0<=k<=n.
2

%I #40 Jun 03 2024 18:26:12

%S 1,1,1,1,3,6,1,7,42,168,1,15,210,2520,20160,1,31,930,26040,624960,

%T 9999360,1,63,3906,234360,13124160,629959680,20158709760,1,127,16002,

%U 1984248,238109760,26668293120,2560156139520,163849992929280,1,255,64770,16322040,4047865920,971487820800,217613271859200,41781748196966400,5348063769211699200

%N Triangle read by rows: T(n,k) is the number of surjective linear mappings from an n-dimensional vector space over F_2 onto a k-dimensional vector space, n>=0, 0<=k<=n.

%C The (q = 2) analog of A008279.

%C A022166(m,k)*T(n,k) is the number of m X n matrices over F_2 that have rank k.

%C a(n) is the number of n X n matrices over F_2 in Green's R class containing A where rank(A) = k. - _Geoffrey Critzer_, Oct 05 2022

%H Geoffrey Critzer, <a href="https://esirc.emporia.edu/handle/123456789/3595">Combinatorics of Vector Spaces over Finite Fields</a>, Master's thesis, Emporia State University, 2018.

%H Jeremy L. Martin, <a href="https://jlmartin.ku.edu/LectureNotes.pdf">Lecture Notes on Algebraic Combinatorics</a>, 2010-2023, Example 2.3.6.

%H Kent E. Morrison, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Morrison/morrison37.html">Integer Sequences and Matrices Over Finite Fields</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Green&#39;s_relations">Green's relations</a>.

%F T(n,k) = Product_{j=0..k-1} (2^n - 2^j).

%F T(n,k) = A002884(k)*A022166(n,k).

%F Let g_m(x) = Sum_{n>=0} (2^m*x)^n/A005329(n) and e(x) = Sum_{n>=0} x^n/A005329(n). Then Sum_{k>=0} T(n,k)*x^k/A005329(k) = g_n(x)/e(x). - _Geoffrey Critzer_, Jun 01 2024

%e 1;

%e 1, 1;

%e 1, 3, 6;

%e 1, 7, 42, 168;

%e 1, 15, 210, 2520, 20160;

%e 1, 31, 930, 26040, 624960, 9999360;

%e ...

%t Table[Table[Product[q^n - q^i, {i, 0, k - 1}] /. q -> 2, {k, 0, n}], {n, 0,8}] // Grid

%Y Columns k=0-10 give: A000012, A000225, 6*A006095, 168*A006096, 20160*A006097, 9999360*A006110, 20158709760*A022189, 163849992929280*A022190, 5348063769211699200*A022191, 699612310033197642547200*A022192, 366440137299948128422802227200*A022193.

%Y Main diagonal gives A002884.

%Y Cf. A022166.

%K nonn,tabl

%O 0,5

%A _Geoffrey Critzer_, Jun 18 2017