login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288834
a(n) = (n+1) * 3^(n-1).
7
2, 9, 36, 135, 486, 1701, 5832, 19683, 65610, 216513, 708588, 2302911, 7440174, 23914845, 76527504, 243931419, 774840978, 2453663097, 7748409780, 24407490807, 76709256822, 240588123669, 753145430616, 2353579470675, 7343167948506, 22876792454961
OFFSET
1,1
FORMULA
O.g.f.: z*(2-3*z)/(1-3*z)^2.
a(n) = -A287768(n+1,2).
a(n) = (n+1)*A000244(n-1). - Felix Fröhlich, Jun 19 2017
a(n) = A027471(n)/3 for n >= 3. - Art Baker, Apr 12 2019
From Amiram Eldar, Jan 18 2021: (Start)
Sum_{n>=1} 1/a(n) = 9*log(3/2) - 3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3 - 9*log(4/3). (End)
MATHEMATICA
Table[(n + 1)*3^(n - 1), {n, 27}] (* Michael De Vlieger, Jun 23 2017 *)
LinearRecurrence[{6, -9}, {2, 9}, 40] (* Harvey P. Dale, Dec 16 2018 *)
PROG
(PARI) a(n) = (n+1)*3^(n-1) \\ Felix Fröhlich, Jun 19 2017
(PARI) Vec((z*(2-3*z)/(1-3*z)^2) + O(z^30)) \\ Felix Fröhlich, Jun 19 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved