login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle read by rows: T(m, k) is the list of squarefree numbers A002110(m) < t < 2*A002110(m) such that A001221(t) = m.
4

%I #18 Jul 15 2017 11:05:41

%S 3,10,42,330,390,2730,3570,3990,4290,39270,43890,46410,51870,53130,

%T 570570,690690,746130,870870,881790,903210,930930,1009470,11741730,

%U 13123110,14804790,15825810,16546530,17160990,17687670,18888870,281291010,300690390,340510170

%N Irregular triangle read by rows: T(m, k) is the list of squarefree numbers A002110(m) < t < 2*A002110(m) such that A001221(t) = m.

%C a(n) = terms t of row m of A288784 such that A002110(m) < t < 2*A002110(m).

%C The only odd term is 3; the only other term not ending in 10, 30, 70, or 90 in decimal is 42.

%C All terms t in row m have A001221(t) = m and at least one prime q coprime to t such that q < A006530(t).

%C Consider "tier" m and primorial p_m# = A002110(m), let "distension" i = pi(A006530(T(m, k))) - m and let "depth" j = m - pi(A053669(T(m, k))) + 1. Distension is the difference in the index of gpf(T(m, k)) and pi(m), while depth is the difference between the index of the least prime totative of T(m, k) and pi(m) + 1. We can calculate the maximum distension i given m and j via i_max = A020900(m - j + 1) - m - j + 1. This enables us to use permutations of 0 and 1 values in the notation A054841 and produce a(n) with some efficiency.

%C The most efficient method of generating a(n) is via f(x) = A287352(x), i.e., subtracting 1 from all values in row x of A287352. We use a pointer variable to direct increment on f(p_m#) = a constant array of m 1's, until we have exhausted producing terms p_m# < t < 2*p_m#. This enables the generation of T(m, k) for 1 <= m <= 100.

%H Michael De Vlieger, <a href="/A288813/b288813.txt">Table of n, a(n) for n = 1..14936</a> (Rows 1 <= m <= 36)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Primorial.html">Primorial</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Squarefree.html">Squarefree</a>

%H Michael De Vlieger, <a href="/A288813/a288813.txt">Relations between A288813, A288784, A002110, and A244052</a>, including prime decompositions of terms of a(n) and all code used to generate the tables.

%e Triangle begins:

%e n a(n)

%e 1: 3

%e 2: 10

%e 3: 42

%e 4: 330 390

%e 5: 2730 3570 3990 4290

%e 6: 39270 43890 46410 51870 53130

%e 7: 570570 690690 746130 870870 881790 903210 930930 1009470

%e ...

%t Table[Function[P, Select[Range[P + 1, 2 P - 1], And[SquareFreeQ@ #, PrimeOmega@ # == n] &]]@ Product[Prime@ i, {i, n}], {n, 7}] // Flatten (* _Michael De Vlieger_, Jun 24 2017 *)

%t f[n_] := Block[{P = Product[Prime@ i, {i, n}], lim, k = 1, c, w = ConstantArray[1, n]}, lim = 2 P; Sort@ Reap[Do[w = If[k == 1, MapAt[# + 1 &, w, -k], Join[Drop[MapAt[# + 1 &, w, -k], -k + 1], ConstantArray[1, k - 1]]]; c = Times @@ Map[If[# == 0, 1, Prime@ #] &, Accumulate@ w]; If[c < lim, Sow[c]; k = 1, If[k == n, Break[], k++]], {i, Infinity}] ][[-1, 1]] ]; Array[f, 9] // Flatten (* _Michael De Vlieger_, Jun 28 2017, faster *)

%o (PARI) primo(n) = prod(i=1, n, prime(i));

%o row(n) = my(vrow = []); for (j=primo(n)+1, 2*primo(n)-1, if (issquarefree(j) && (omega(j)==n), vrow = concat(vrow, j))); vrow;

%o tabf(nn) = for (n=1, nn, print(row(n))); \\ _Michel Marcus_, Jun 29 2017

%Y Cf. A001221, A002110, A020900, A288784.

%K nonn,tabf,easy

%O 1,1

%A _Michael De Vlieger_, Jun 24 2017