login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288782
Integers k that have the property that there exists an integer x with n+1 digits, such that 1 <= k/x < 2 and k/x = 1 + (x-10^n)/(10^n-1), i.e., the same digits appear in the denominator and in the recurring decimal.
3
10, 34, 100, 208, 238, 394, 1000, 1680, 2898, 3994, 10000, 14938, 16198, 22348, 22648, 29830, 31600, 39994, 100000, 109994, 137694, 149380, 316048, 333630, 380720, 399994, 1000000, 1010610, 1079440, 1306120, 1318244, 1396694, 1409228, 1460458, 1738920, 1768810, 1826150
OFFSET
1,1
COMMENTS
The values 399..994 all seem to appear.
LINKS
MATHEMATICA
Union @@ Reap[ Do[Sow[k /. List@ToRules@ Reduce[k/x == 1 + (x - 10^n)/(10^n - 1) && 10^n <= x < 10^(n + 1) && x <= k < 2 x, {k, x}, Integers]], {n, 6}]][[2, 1]] (* Giovanni Resta, Jun 30 2017 *)
PROG
(Python 3)
from math import sqrt
def is_square(n):
root = int(sqrt(n))
return root*root == n
def find_sols(length):
count = 0
k=10**length
for n in range(k, 4*k-2):
discr= (2*k-1)*(2*k-1) - 4*(k*(k-1)-(k-1)*n)
if is_square(discr):
count+=1
b=(-(2*k-1)+sqrt(discr))/2
print(n, k+b, n/(k+b))
return count
for i in range(8):
print(find_sols(i))
CROSSREFS
Cf. A285273, A288781 (denominators).
Sequence in context: A009924 A297721 A019257 * A020877 A119171 A119229
KEYWORD
nonn,base
AUTHOR
James Kilfiger, Jun 15 2017
EXTENSIONS
Definition corrected by Giovanni Resta, Jun 30 2017
STATUS
approved