login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A288630 McKay-Thompson series of class 6A for the Monster group with a(0) = 10. 2
1, 10, 79, 352, 1431, 4160, 13015, 31968, 81162, 183680, 412857, 864320, 1805030, 3564864, 7000753, 13243392, 24805035, 45168896, 81544240, 143832672, 251550676, 432030080, 735553575, 1233715328, 2052941733, 3372465024, 5499116975, 8869747264, 14205516345 (list; graph; refs; listen; history; text; internal format)
OFFSET
-1,2
LINKS
FORMULA
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = f(t) where q = exp(2 Pi i t).
a(n) = A007254(n) = A045484(n) unless n=0.
Convolution square of A058490.
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (2^(3/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2017
Expansion of A/q - 2 + q/A, where A = (eta(q^2)*eta(q^3)/(eta(q)*eta(q^6) ))^12, in powers of q. - G. C. Greubel, Jun 20 2018
EXAMPLE
G.f. = x^-1 + 10 + 79*x + 352*x^2 + 1431*x^3 + 4160*x^4 + 13015*x^5 + ...
MATHEMATICA
a[ n_] := With[{A = (QPochhammer[ x^2] QPochhammer[ x^3] / (QPochhammer[ x] QPochhammer[ x^6]))^12}, SeriesCoefficient[ A/x - 2 + x/A, {x, 0, n}]];
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); A = (eta(x^2 + A) * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)))^12; polcoeff( A - 2*x + x^2/A, n))};
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); A = (eta(x + A) * eta(x^2 + A) / (eta(x^3 + A) * eta(x^6 + A)))^4; polcoeff( A + 14*x + 81*x^2/A, n))};
CROSSREFS
Sequence in context: A283658 A160655 A006469 * A081905 A016138 A006329
KEYWORD
nonn
AUTHOR
Michael Somos, Jun 12 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 03:30 EDT 2024. Contains 371906 sequences. (Running on oeis4.)