login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288511
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - 4*a(n-4) + 4*a(n-5) - 4*a(n-6) + 4*a(n-7) - 4*a(n-8) + 4*a(n-9) - 3*a(n-10) + 2*a(n-11) - 3*a(n-12) + 2*a(n-13) for n >= 16, with initial values as shown.
3
2, 4, 5, 7, 9, 12, 17, 23, 33, 48, 70, 103, 152, 228, 343, 515, 779, 1180, 1787, 2715, 4124, 6264, 9526, 14483, 22025, 33504, 50957, 77519, 117929, 179396, 272930, 415215, 631680, 961032, 1462067, 2224347, 3384083, 5148432, 7832727, 11916547, 18129540
OFFSET
0,1
COMMENTS
Conjecture: a(n) is the number of letters (0's and 1's) in the n-th iteration of the mapping 00->0101, 10->001, starting with 00; see A288508.
LINKS
Index entries for linear recurrences with constant coefficients, signature (2, -1, 2, -4, 4, -4, 4, -4, 4, -3, 2, -3, 2).
FORMULA
G.f.: x*(2 - x^2 - 3*x^3 - x^5 - x^7 - x^9 - x^10 - 3*x^11 + x^12 + 2*x^13 + x^14- 2*x^15) / ((1 - x)^2*(1 - x^2 - 2*x^3)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, Jun 12 2017
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - 4*a(n-4) + 4*a(n-5) - 4*a(n-6) + 4*a(n-7) - 4*a(n-8) + 4*a(n-9) - 3*a(n-10) + 2*a(n-11) - 3*a(n-12) + 2*a(n-13) for n >= 16, where a(0)=2, a(1)=4, a(2)=5, a(3)=7, a(4)=9, a(5)=12, a(6)=17, a(7)=23, a(8)=33, a(9)=48, a(10)=70, a(11)=103, a(12)=152, a(13)=228, a(14)=343, a(15)=515.
MATHEMATICA
Join[{2, 4, 5}, LinearRecurrence[{2, -1, 2, -4, 4, -4, 4, -4, 4, -3, 2, -3, 2}, {7, 9, 12, 17, 23, 33, 48, 70, 103, 152, 228, 343, 515}, 40]]
PROG
(PARI) Vec(x*(2 - x^2 - 3*x^3 - x^5 - x^7 - x^9 - x^10 - 3*x^11 + x^12 + 2*x^13 + x^14- 2*x^15) / ((1 - x)^2*(1 - x^2 - 2*x^3)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)) + O(x^60)) \\ Colin Barker, Jun 12 2017
CROSSREFS
Cf. A288508.
Sequence in context: A275534 A069355 A212661 * A249058 A105771 A193494
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 12 2017
STATUS
approved