Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Oct 02 2023 14:26:25
%S 1,2,4,7,12,19,30,45,67,97,138,192,265,359,482,639,840,1092,1410,1803,
%T 2291,2889,3621,4508,5584,6875,8424,10269,12463,15055,18115,21704,
%U 25910,30814,36522,43137,50794,59618,69774,81422,94760,109984,127338,147058,169438
%N Expansion of 1 / ((1-x)^2*(1-x^2)*(1-x^3)*...*(1-x^9)).
%C Number of partitions of at most n into at most 9 parts.
%H Seiichi Manyama, <a href="/A288344/b288344.txt">Table of n, a(n) for n = 0..10000</a>
%H Richard J. Mathar, <a href="/A293482/a293482.pdf">Size of the Set of Residues of Integer Powers of Fixed Exponent</a>, research paper, 2017.
%H <a href="/index/Rec#order_46">Index entries for linear recurrences with constant coefficients</a>, signature (2, 0, -1, 0, -1, 1, -1, 1, 0, -1, 1, 2, -1, 0, 0, -1, -1, 0, 0, -1, 1, 0, 2, 0, 1, -1, 0, 0, -1, -1, 0, 0, -1, 2, 1, -1, 0, 1, -1, 1, -1, 0, -1, 0, 2, -1).
%o (PARI) x='x+O('x^99); Vec(1/((1-x)*prod(i=1, 9, (1-x^i)))) \\ _Altug Alkan_, Mar 28 2018
%Y Number of partitions of at most n into at most k parts: A002621 (k=4), A002622 (k=5), A288341 (k=6), A288342 (k=7), A288343 (k=8), this sequence (k=9), A288345 (k=10).
%Y Cf. A288256, A008638 (first differences).
%K nonn,easy
%O 0,2
%A _Seiichi Manyama_, Jun 08 2017