Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Oct 27 2024 20:29:09
%S 0,1,1,2,0,2,2,3,1,6,3,9,9,3,2,4,12,2,1,7,7,15,15,10,23,10,3,18,18,18,
%T 13,5,26,13,13,21,21,21,34,8,27,8,29,16,16,16,10,11,24,24,24,11,11,4,
%U 2,19,32,19,32,19,19,45,44,6,27,27,27,14,14,14,31,22
%N Number of steps, reduced mod n, to reach 1 in the Collatz 3x+1 problem, or -1 if 1 is never reached.
%F a(n) = A006577(n) mod n.
%e For n = 3, which takes 7 steps to reach 1 in the Collatz (3x+1) problem: (10, 5, 16, 8, 4, 2, 1), 7 mod 3 = 1.
%t Table[Mod[-1 + Length[NestWhileList[If[EvenQ@ #, #/2, 3 # + 1] &, n, # != 1 &]], n], {n, 72}] (* _Michael De Vlieger_, Jun 09 2017 *)
%o (Python)
%o def stepCount(x):
%o x = int(x)
%o steps = 0
%o while True:
%o if x == 1:
%o break
%o elif x % 2 == 0:
%o x = x/2
%o steps += 1
%o else:
%o x = x*3 + 1
%o steps += 1
%o return steps
%o n = 1
%o while True:
%o print(stepCount(n) % n)
%o n += 1
%o (PARI) a(n)=s=n; c=0; while(s>1, s=if(s%2, 3*s+1, s/2); c++); c % n; \\ _Michel Marcus_, Jun 10 2017
%Y Cf. A006577.
%K nonn
%O 1,4
%A _Ryan Pythagoras Newton Critchlow_, Jun 07 2017