login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of rooted maps with n edges and one face on an orientable surface of genus 4.
10

%I #17 Oct 16 2018 12:35:22

%S 225225,12317877,351683046,7034538511,111159740692,1480593013900,

%T 17302190625720,182231849209410,1763184571730010,15894791312284170,

%U 134951136993773100,1088243826731751690,8391311316938069520,62210659883935683120,445441857820701181440,3092035882104030618900

%N a(n) is the number of rooted maps with n edges and one face on an orientable surface of genus 4.

%H Sean R. Carrell, Guillaume Chapuy, <a href="http://arxiv.org/abs/1402.6300">Simple recurrence formulas to count maps on orientable surfaces</a>, arXiv:1402.6300 [math.CO], 2014.

%F G.f.: -143*y*(y-1)^8*(1575*y^6 + 13689*y^5 + 4689*y^4 - 34417*y^3 + 11361*y^2 + 7017*y - 2339)/(y-2)^23, where y=A000108(x).

%t Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;

%t Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);

%t a[n_] := Q[n, 1, 4];

%t Table[a[n], {n, 8, 23}] (* _Jean-François Alcover_, Oct 16 2018 *)

%o (PARI)

%o A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);

%o A288271_ser(N) = {

%o my(y = A000108_ser(N+1));

%o -143*y*(y-1)^8*(1575*y^6 + 13689*y^5 + 4689*y^4 - 34417*y^3 + 11361*y^2 + 7017*y - 2339)/(y-2)^23;

%o };

%o Vec(A288271_ser(16))

%Y Rooted maps of genus 4 with n edges and f faces for 1<=f<=10: this sequence, A288272 f=2, A288273 f=3, A288274 f=4, A288275 f=5, A288276 f=6, A288277 f=7, A288278 f=8, A288279 f=9, A288280 f=10.

%Y Column 1 of A269924.

%Y Cf. A000108.

%K nonn

%O 8,1

%A _Gheorghe Coserea_, Jun 08 2017