OFFSET
0,2
COMMENTS
Conjecture: the sequence is strictly increasing.
LINKS
Robert Israel, Table of n, a(n) for n = 0..4089
FORMULA
G.f.: 1/(Sum_{k>=0} [(k+1)*r)](-x)^k), where r = sqrt(11/4) and [ ] = floor.
MAPLE
N:= 100: # to get a(0)..a(N)
r:= sqrt(11/4):
G:= 1/add(floor((k+1)*r)*(-x)^k, k=0..N):
S:= series(G, x, N+1):
seq(coeff(S, x, j), j=0..N); # Robert Israel, Jul 13 2017
MATHEMATICA
r = Sqrt[11/4];
u = 1000; (* # initial terms from given series *)
v = 100; (* # coefficients in reciprocal series *)
CoefficientList[Series[1/Sum[Floor[r*(k + 1)] (-x)^k, {k, 0, u}], {x, 0, v}], x]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 11 2017
STATUS
approved