Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 May 29 2018 03:04:32
%S 1,1,1,3,4,12,28,63,177,455,1233,3383,9359,26809,77078,223201,653982,
%T 1934508,5783712,17431660,52879184,161386859,495432345,1530191918,
%U 4754079840,14849407892,46604383972,146897291083,464892421363,1477052536749,4711124635655
%N Number of Dyck paths of semilength n such that the number of peaks is weakly decreasing from lower to higher levels.
%H Alois P. Heinz, <a href="/A288140/b288140.txt">Table of n, a(n) for n = 0..200</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a>
%e . a(5) = 12:
%e . /\ /\ /\
%e . /\/\/\/\/\ /\/\/\/ \ /\/\/ \/\ /\/ \/\/\
%e .
%e . /\ /\/\ /\/\ /\/\
%e . / \/\/\/\ /\/\/ \ /\/ \/\ / \/\/\
%e .
%e . /\ /\ /\ /\
%e . /\/ \ / \/\ /\/ \ / \/\
%e . /\/ \ /\/ \ / \/\ / \/\ .
%p b:= proc(n, k, j) option remember; `if`(n=j, 1, add(add(
%p b(n-j, t, i)*binomial(i, t)*binomial(j-1, i-1-t),
%p t=max(k, i-j)..min(n-j, i-1)), i=1..n-j))
%p end:
%p a:= n-> `if`(n=0, 1, add(b(n, k$2), k=1..n)):
%p seq(a(n), n=0..31);
%t b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[Sum[b[n - j, t, i]* Binomial[i, t]*Binomial[j - 1, i - 1 - t], {t, Max[k, i - j], Min[n - j, i - 1]}], {i, 1, n - j}]];
%t a[n_] := If[n == 0, 1, Sum[b[n, k, k], {k, 1, n}]];
%t Table[a[n], {n, 0, 31}] (* _Jean-François Alcover_, May 29 2018, from Maple *)
%Y Cf. A000108, A008930, A048285, A288141, A288146, A288147.
%K nonn
%O 0,4
%A _Alois P. Heinz_, Jun 05 2017