Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #4 Jun 05 2017 17:34:31
%S 1,0,1,1,1,2,2,2,3,3,4,4,5,6,6,8,8,9,11,11,13,14,15,17,18,20,22,23,26,
%T 27,30,32,34,37,39,42,45,47,51,54,57,61,64,68,72,76,80,84,89,93,98,
%U 103,108,113,119,124,130,136,142,148,155,161,168,175,182,190,197,205,213,221,230
%N Number of partitions of n into prime Fibonacci numbers (A005478).
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FibonacciPrime.html">Fibonacci Prime</a>
%H <a href="/index/Par#part">Index entries for related partition-counting sequences</a>
%F G.f.: Product_{k>=1} 1/(1 - x^A005478(k)).
%e a(8) = 3 because we have [5, 3], [3, 3, 2] and [2, 2, 2, 2].
%t CoefficientList[Series[Product[1/(1 - Boole[PrimeQ[Fibonacci[k]]] x^Fibonacci[k]), {k, 1, 30}], {x, 0, 70}], x]
%Y Cf. A000045, A000607, A003107, A005478, A007000.
%K nonn
%O 0,6
%A _Ilya Gutkovskiy_, Jun 05 2017