login
Number of Dyck paths of semilength n such that each level has exactly six peaks or no peaks.
2

%I #9 Jun 02 2018 10:36:17

%S 1,0,0,0,0,0,1,1,6,16,31,56,102,179,426,1490,5164,18715,73281,253183,

%T 741420,1915072,4599352,10845192,26990806,76446936,251549461,

%U 918616924,3497341145,13161267180,47114251055,157204766841,487208649994,1416324380706,3944267803650

%N Number of Dyck paths of semilength n such that each level has exactly six peaks or no peaks.

%H Alois P. Heinz, <a href="/A288113/b288113.txt">Table of n, a(n) for n = 0..1000</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a>

%p b:= proc(n, k, j) option remember; `if`(n=j, 1, add(

%p b(n-j, k, i)*(binomial(j-1, i-1)+binomial(i, k)

%p *binomial(j-1, i-1-k)), i=1..min(j+k, n-j)))

%p end:

%p a:= n-> `if`(n=0, 1, b(n, 6$2)):

%p seq(a(n), n=0..40);

%t b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n - j, k, i]*(Binomial[j - 1, i - 1] + Binomial[i, k]*Binomial[j - 1, i - 1 - k]), {i, 1, Min[j + k, n - j]}]];

%t a[n_] := If[n == 0, 1, b[n, 6, 6]];

%t Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Jun 02 2018, from Maple *)

%Y Column k=6 of A288108.

%K nonn

%O 0,9

%A _Alois P. Heinz_, Jun 05 2017