Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Sep 08 2022 08:46:19
%S 3,9,8,9,2,4,1,2,1,2,6,9,0,1,3,6,5,4,4,1,3,3,6,4,2,1,3,4,8,0,1,9,0,9,
%T 9,4,3,8,3,5,9,2,7,3,9,2,4,5,7,6,8,1,4,8,2,6,2,0,9,5,5,6,6,5,3,0,4,1,
%U 6,4,8,8,7,6,0,5,1,5,5,1,0,8,3,8,6,2,6,1,2,0,8,0,8,0,0,6,8,4,2,3,0,7,9
%N Decimal expansion of m(8) = Sum_{n>=0} 1/n!8, the 8th reciprocal multifactorial constant.
%H G. C. Greubel, <a href="/A288095/b288095.txt">Table of n, a(n) for n = 1..10000</a>
%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/ReciprocalMultifactorialConstant.html">Reciprocal Multifactorial Constant</a>
%F m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} (gamma(j/k) - gamma(j/k, 1/k)) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function.
%e 3.9892412126901365441336421348019099438359273924576814826209556653...
%t m[k_] := (1/k) Exp[1/k] (k + Sum[k^(j/k) (Gamma[j/k] - Gamma[j/k, 1/k]), {j, 1, k - 1}]); RealDigits[m[8], 10, 103][[1]]
%o (PARI) default(realprecision, 105); (1/8)*exp(1/8)*(8 + sum(k=1,7, 8^(k/8)*(gamma(k/8) - incgam(k/8, 1/8)))) \\ _G. C. Greubel_, Mar 28 2019
%o (Magma) SetDefaultRealField(RealField(107)); (1/8)*Exp(1/8)*(8 + (&+[8^(k/8)*Gamma(k/8, 1/8): k in [1..7]])); // _G. C. Greubel_, Mar 28 2019
%o (Sage) numerical_approx((1/8)*exp(1/8)*(8 + sum(8^(k/8)*(gamma(k/8) - gamma_inc(k/8, 1/8)) for k in (1..7))), digits=105) # _G. C. Greubel_, Mar 28 2019
%Y Cf. A114800 (n!8), A143280 (m(2)), A288055 (m(3)), A288091 (m(4)), A288092 (m(5)), A288093 (m(6)), A288094 (m(7)), this sequence (m(8)), A288096 (m(9)).
%K nonn,cons
%O 1,1
%A _Jean-François Alcover_, Jun 05 2017