%I #27 May 10 2020 04:30:42
%S 10,12,13,14,15,16,17,18,19,20,21,23,24,25,26,27,28,29,30,31,32,34,35,
%T 36,37,38,39,40,41,42,43,45,46,47,48,49,50,51,52,53,54,56,57,58,59,60,
%U 61,62,63,64,65,67,68,69,70,71,72,73,74,75,76,78,79,80,81,82,83,84,85,86,87,89,90,91,92,93,94,95,96,97,98,100,101
%N Integers whose number of distinct decimal digits is prime.
%C Differs from A139819 (which contains, for example, 1234, a number with 4 distinct decimal digits). - _R. J. Mathar_, Jun 14 2017
%t Select[Range@ 101, PrimeQ@ Count[DigitCount[#], _?(# != 0 &)] &] (* _Michael De Vlieger_, Jun 06 2017 *)
%o (Python)
%o from sympy import isprime
%o print([n for n in range(1, 100) if isprime(len(set(str(n))))])
%o (PARI) isok(m) = isprime(#Set(digits(m))); \\ _Michel Marcus_, May 10 2020
%Y Union of A031955 and A031962 and ....
%K base,nonn
%O 1,1
%A _Jonathan Frech_, Jun 04 2017