OFFSET
3,1
LINKS
Colin Barker, Table of n, a(n) for n = 3..1000
Eric Weisstein's World of Mathematics, Graph Path
Eric Weisstein's World of Mathematics, Web Graph
Index entries for linear recurrences with constant coefficients, signature (8,-26,44,-41,20,-4).
FORMULA
a(n) = n*(-104+89*2^n-52*n-8*n^2)/4.
a(n) = 8*a(n-1)-26*a(n-2)+44*a(n-3)-41*a(n-4)+20*a(n-5)-4*a(n-6).
G.f.: x^3*(285 - 1296*x + 2393*x^2 - 2308*x^3 + 1146*x^4 - 232*x^5) / ((1 - x)^4*(1 - 2*x)^2). - Colin Barker, Jun 05 2017
MATHEMATICA
Table[1/4 n (-104 + 89 2^n - 52 n - 8 n^2), {n, 3, 20}]
LinearRecurrence[{8, -26, 44, -41, 20, -4}, {285, 984, 2855, 7488, 18431, 43504}, 18]
CoefficientList[Series[(285 - 1296 x + 2393 x^2 - 2308 x^3 + 1146 x^4 - 232 x^5)/((1 - x)^4 (1 - 2 x)^2), {x, 0, 20}], x]
PROG
(PARI) Vec(x^3*(285 - 1296*x + 2393*x^2 - 2308*x^3 + 1146*x^4 - 232*x^5) / ((1 - x)^4*(1 - 2*x)^2) + O(x^30)) \\ Colin Barker, Jun 05 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Jun 04 2017
STATUS
approved