login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288037
Number of (undirected) paths in the n-web graph.
1
285, 984, 2855, 7488, 18431, 43504, 99783, 224280, 496727, 1087992, 2362607, 5095216, 10926255, 23318880, 49563959, 104972328, 221623847, 466594600, 979869471, 2053083648, 4292838335, 8958997584, 18664612775, 38822433208, 80631250551, 167235234264, 346415895503
OFFSET
3,1
LINKS
Eric Weisstein's World of Mathematics, Graph Path
Eric Weisstein's World of Mathematics, Web Graph
FORMULA
a(n) = n*(-104+89*2^n-52*n-8*n^2)/4.
a(n) = 8*a(n-1)-26*a(n-2)+44*a(n-3)-41*a(n-4)+20*a(n-5)-4*a(n-6).
G.f.: x^3*(285 - 1296*x + 2393*x^2 - 2308*x^3 + 1146*x^4 - 232*x^5) / ((1 - x)^4*(1 - 2*x)^2). - Colin Barker, Jun 05 2017
MATHEMATICA
Table[1/4 n (-104 + 89 2^n - 52 n - 8 n^2), {n, 3, 20}]
LinearRecurrence[{8, -26, 44, -41, 20, -4}, {285, 984, 2855, 7488, 18431, 43504}, 18]
CoefficientList[Series[(285 - 1296 x + 2393 x^2 - 2308 x^3 + 1146 x^4 - 232 x^5)/((1 - x)^4 (1 - 2 x)^2), {x, 0, 20}], x]
PROG
(PARI) Vec(x^3*(285 - 1296*x + 2393*x^2 - 2308*x^3 + 1146*x^4 - 232*x^5) / ((1 - x)^4*(1 - 2*x)^2) + O(x^30)) \\ Colin Barker, Jun 05 2017
CROSSREFS
Sequence in context: A339681 A249954 A043415 * A105921 A209311 A176712
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Jun 04 2017
STATUS
approved