login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(1, c) = prime(c). T(r + 1, c) = (T(r, c') + T(r, c'+1)) / 2 where c' is the c-th number such that T(r, c') + T(r, c'+1) is even. Table for T read downwards by antidiagonals.
1

%I #36 Aug 09 2017 22:16:31

%S 2,3,4,5,6,5,7,9,28,30,11,12,32,60,45,13,15,53,68,64,97,17,18,58,85,

%T 130,223,160,19,21,62,116,193,322,558,359,23,26,74,144,208,401,868,

%U 713,536,29,30,96,165,238,540,957,1180,1553,2866,31,34,136,186,265,576,1403

%N T(1, c) = prime(c). T(r + 1, c) = (T(r, c') + T(r, c'+1)) / 2 where c' is the c-th number such that T(r, c') + T(r, c'+1) is even. Table for T read downwards by antidiagonals.

%C This array has the same idea as Gilbreath's conjecture (see A036262) but instead of absolute difference it is the integer average sum.

%H Robert G. Wilson v, <a href="/A287943/b287943.txt">Table of n, a(n) for n = 1..465</a>

%e Row

%e 1: 2 3 5 7 11 13 17

%e 2: 4 6 9 12 15 18 21

%e 3: 5 28 32 53 58 62 74

%e 4: 30 60 68 85 116 144 165

%e 5: 45 64 130 193 208 238 265

%e 6: 97 223 322 401 540 576 765

%e 7: 160 558 868 957 1403 1531 1598

%e 8: 359 713 1180 1467 1639 1808 3131

%e 9: 536 1553 4179 5178 6335 7865 9274

%e 10: 2866 7100 14023 14900 15838 17837 20121

%e 11: 4983 15369 18979 22054 28390 43704 47511

%e 12: 10176 17174 25222 36047 60602 87739 120599

%e 13: 13675 21198 104169 155638 193710 201367 223740

%e 14: 174674 271986 372056 479130 542177 553224 581451

%e 15: 223330 322021 425593 590611 650029 807687 924065

%e 16: 373807 508102 620320 728858 865876 1094922 1133312

%e 17: 564211 674589 797367 980399 1114117 1378160 2055687

%e 18: 619400 735978 888883 1047258 3000375 4135480 5526718

%e 19: 677689 4831099 5819401 7119393 7743933 8367375 9362587

%e 20: 2754394 5325250 6469397 7431663 8055654 8864981 14204980

%e 21: 4039822 6950530 36789607 41026156 43928115 47881364 50592342

%e 22: 5495176 49236853 51408848 61276421 64658379 88092051 96453019

%e 23: 62967400 76375215 92272535 119006122 209296919 261901315 310000824

%e 24: 84323875 235599117 316302735 400483922 497171955 515469235 524697491

%e 25: 159961496 275950926 506320595 520083363 555977282 619254662 638646183

%e 26: 217956211 513201979 587615972 647540001 684757327 812990322 1671545118

%e 27: 365579095 666148664 1242267720 1989912374 2194765721 2371664980 2708581740

%e 28: 954208192 1616090047 2540123360 3262521514 3383785254 3840848685

%e 29: 2901322437 3323153384

%e etc.

%e The 2nd row begins with 4, 6 and 9 since it is the integer average, 4 is the average between 3 and 5, six is the average between 5 and 7, and nine is the average between 7 and 11, etc.

%t t = NestList[Select[(Rest@# + Most@#)/2, IntegerQ] &, Prime@ Range@ 1100, 10]; Table[ t[[n -k +1, k]], {n, 11}, {k, n, 1, -1}] // Flatten

%Y Cf. A000040, A024675, A036262.

%K nonn,tabl

%O 1,1

%A _Zak Seidov_ and _Robert G. Wilson v_, Jun 03 2017