OFFSET
1,2
COMMENTS
The sequence contains A287799.
a(n) == 3 or 15 (mod 18) for n > 1.
The numbers a(n)/3 are 1, 7, 11, 31, 35, 41, 59, 73, 79, 107, ... with a majority of prime numbers, except the subset {b(m)} = {1, 35, 473, 737, 1247, 2489, 2627, ...}. It seems that b(m) is semiprime for m > 1.
From Robert Israel, Jul 13 2017: (Start)
Not all b(m) for m > 1 are semiprime.
A counterexample is a(8821) = 23963385 = 3*5*373*4283.
All terms are squarefree. (End)
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
105 = 1*105 = 3*35 = 5*21 = 7*15 => 1^2 + 2*105^2 = 22051, 3^2 + 2*35^2 = 2459, 5^2 + 2*21^2 = 907 and 7^2 + 2*15^2 = 499 are primes.
MAPLE
filter:= proc(m)
andmap(x -> isprime(x^2 + 2*(m/x)^2),
select(t -> t^2 <= m, numtheory:-divisors(m)));
end proc:
select(filter, [1, seq(i, i=3..10000, 3)]); # Robert Israel, Jul 13 2017
MATHEMATICA
t={}; Do[ds=Divisors[n]; If[EvenQ[Length[ds]], ok=True; k=1; While[k<=Length[ds]/2&&(ok=PrimeQ[ds[[k]]^2+2*ds[[-k]]^2]), k++]; If[ok, AppendTo[t, n]]], {n, 2, 10^4}]; t
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jun 03 2017
EXTENSIONS
Edited by Robert Israel, Jul 13 2017
STATUS
approved