OFFSET
0,5
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Wikipedia, Counting lattice paths
EXAMPLE
. a(2) = 1: /\/\ .
.
. a(3) = 1: /\/\
. / \ .
.
. a(4) = 2: /\/\
. /\ /\ / \
. / \/ \ / \ .
.
. a(5) = 5: /\/\
. /\ /\ / \
. /\/\ /\/\ /\/\ / \/ \ / \
. /\/\/ \ /\/ \/\ / \/\/\ / \ / \ .
MAPLE
b:= proc(n, j) option remember; `if`(n=j or n=0, 1,
add(b(n-j, i)*(binomial(j-1, i-1) +i*(i-1)/2*
binomial(j-1, i-3)), i=1..min(j+3, n-j)))
end:
a:= n-> b(n, 2):
seq(a(n), n=0..35);
MATHEMATICA
b[n_, j_] := b[n, j] = If[n == j || n == 0, 1, Sum[b[n - j, i]*(Binomial[j - 1, i-1] + i*(i-1)/2*Binomial[j-1, i-3]), {i, 1, Min[j + 3, n - j]}]];
a[n_] := b[n, 2];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 25 2018, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 01 2017
STATUS
approved