login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287843
Number of Dyck paths of semilength n such that each level with peaks has exactly two peaks.
5
1, 0, 1, 1, 2, 5, 15, 27, 76, 196, 548, 1388, 3621, 9894, 27553, 75346, 205634, 563729, 1565409, 4370226, 12191929, 33980329, 94874987, 265668404, 745652478, 2095025688, 5889310438, 16565399257, 46633521554, 131388795335, 370434641340, 1044917168292
OFFSET
0,5
LINKS
EXAMPLE
. a(2) = 1: /\/\ .
.
. a(3) = 1: /\/\
. / \ .
.
. a(4) = 2: /\/\
. /\ /\ / \
. / \/ \ / \ .
.
. a(5) = 5: /\/\
. /\ /\ / \
. /\/\ /\/\ /\/\ / \/ \ / \
. /\/\/ \ /\/ \/\ / \/\/\ / \ / \ .
MAPLE
b:= proc(n, j) option remember; `if`(n=j or n=0, 1,
add(b(n-j, i)*(binomial(j-1, i-1) +i*(i-1)/2*
binomial(j-1, i-3)), i=1..min(j+3, n-j)))
end:
a:= n-> b(n, 2):
seq(a(n), n=0..35);
MATHEMATICA
b[n_, j_] := b[n, j] = If[n == j || n == 0, 1, Sum[b[n - j, i]*(Binomial[j - 1, i-1] + i*(i-1)/2*Binomial[j-1, i-3]), {i, 1, Min[j + 3, n - j]}]];
a[n_] := b[n, 2];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 25 2018, translated from Maple *)
CROSSREFS
Column k=2 of A288108.
Sequence in context: A290527 A146117 A290550 * A290828 A290836 A191313
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 01 2017
STATUS
approved