login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of septenary sequences of length n such that no two consecutive terms have distance 3.
0

%I #9 Jun 05 2017 16:02:21

%S 1,7,41,241,1417,8333,49005,288193,1694833,9967141,58615749,344713305,

%T 2027224169,11921900829,70111496093,412318635697,2424804301985,

%U 14260029486677,83861794865077,493182755657289,2900358033942041,17056713010658765,100308808541321741

%N Number of septenary sequences of length n such that no two consecutive terms have distance 3.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6, 1, -10).

%F For n>3, a(n) = 6*a(n-1) + a(n-2) - 10*a(n-3), a(0)=1, a(1)=7, a(2)=41, a(3)=241.

%F G.f.: (1 + x - 2*x^2 - 2*x^3)/(1 - 6*x - x^2 + 10*x^3).

%e For n=2 the a(2) = 49-8 = 41 sequences contain every combination except these eight: 03, 30, 14, 41, 25, 52, 36, 63.

%t LinearRecurrence[{6, 1, -10}, {1, 7, 41, 241}, 40]

%o (Python)

%o def a(n):

%o .if n in [0, 1, 2, 3]:

%o ..return [1, 7, 41, 241][n]

%o .return 6*a(n-1)+a(n-2)-10*a(n-3)

%Y Cf. A040000, A003945, A083318, A078057, A003946, A126358, A003946, A055099, A003947, A015448, A126473.

%Y Cf. A287804-A287819.

%K nonn,easy

%O 0,2

%A _David Nacin_, Jun 01 2017