Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Sep 08 2022 08:46:19
%S 900,2400,3840,6480,7200,11520,13056,39168,42240,79200,83232,96000,
%T 126720,145200,153600,157440,174240,195840,207360,288000,300000,
%U 317520,326592,387840,435600,460800,472320,480000,900000,971520,1056000,1161600,1163520,1228800,1440000
%N Numbers n such that phi(n) * tau(n) divides n^2, but neither tau(n) nor phi(n) divides n.
%C The GCD of the first 43 terms is 12. The GCD of the first 166 terms is 4. The GCD of a(2) through a(166) is 16. - _David A. Corneth_, Jun 01 2017
%H Amiram Eldar, <a href="/A287800/b287800.txt">Table of n, a(n) for n = 1..780</a> (terms below 10^10)
%e For n = 900, tau(900) = 27, phi(900) = 240 and 900^2/(27 * 240) = 125, but 900/27 = 33.33333 and 900/240 = 3.75.
%p for n from 1 to 100000 do p(n):=n^2/(tau(n)*phi(n));
%p if p(n)=floor(p(n)) and n/tau(n)<>floor(n/tau(n)) and n/phi(n)<>floor(n/phi(n)) then print(n,p(n),phi(n),tau(n)) else fi; od:
%t Select[Range[10^6], Function[n, And[Divisible[n^2, #1 #2], NoneTrue[{#1, #2}, Divisible[n, #] &]] & @@ {DivisorSigma[0, n], EulerPhi[n]}]] (* _Michael De Vlieger_, Jun 01 2017 *)
%o (PARI) is(n) = n^2 % (numdiv(n)*eulerphi(n)) == 0 && n % numdiv(n) != 0 && n % eulerphi(n) % n!=0 \\ _David A. Corneth_, Jun 01 2017
%o (Magma) [k:k in [1..1500000]| k^2 mod (EulerPhi(k) *NumberOfDivisors(k)) eq 0 and (k mod EulerPhi(k) ne 0) and (k mod NumberOfDivisors(k) ne 0)]; // _Marius A. Burtea_, Dec 30 2019
%Y Cf. A000005, A000010, A007694, A033950, A235353.
%K nonn
%O 1,1
%A _Bernard Schott_, Jun 01 2017