login
Number of Dyck paths of semilength n such that every peak at level y > 1 is preceded by (at least) one peak at level y-1 and is followed by (at least) one peak at level y-1.
4

%I #19 Mar 29 2024 10:44:57

%S 1,1,1,1,2,4,8,17,39,95,241,629,1679,4572,12684,35812,102774,299371,

%T 883848,2641121,7978262,24337821,74908008,232451921,726831776,

%U 2288799963,7255401745,23143158678,74256591422,239582207959,777047305709,2532730030266,8293970682858

%N Number of Dyck paths of semilength n such that every peak at level y > 1 is preceded by (at least) one peak at level y-1 and is followed by (at least) one peak at level y-1.

%H Alois P. Heinz, <a href="/A287776/b287776.txt">Table of n, a(n) for n = 0..430</a>

%H Axel Bacher, <a href="https://arxiv.org/abs/2403.08120">Progressive and rushed Dyck paths</a>, arXiv:2403.08120 [math.CO], 2024. See p. 7.

%H Alois P. Heinz, <a href="/A287776/a287776.gif">Animation of a(9) = 95 paths</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a>

%e a(4) = 2: /\

%e /\/\/\/\ /\/ \/\ .

%e a(5) = 4: /\ /\ /\/\

%e /\/\/\/\/\ /\/\/ \/\ /\/ \/\/\ /\/ \/\ .

%p b:= proc(x, y, k, h, t) option remember; `if`(x=0, `if`(h<2, 1, 0),

%p `if`(y<=k and y<x-1, b(x-1, y+1, k, h, 1), 0) +`if`(y>0,

%p b(x-1, y-1, max(y, k), `if`(t=1 and h<=y+1, y, h), 0), 0))

%p end:

%p a:= n-> b(2*n, 0$4):

%p seq(a(n), n=0..35);

%t b[x_, y_, k_, h_, t_] := b[x, y, k, h, t] = If[x == 0, If[h < 2, 1, 0], If[y <= k && y < x - 1, b[x - 1, y + 1, k, h, 1], 0] + If[y > 0, b[x - 1, y - 1, Max[y, k], If[t == 1 && h <= y + 1, y, h], 0], 0]];

%t a[n_] := b[2n, 0, 0, 0, 0];

%t Table[a[n], {n, 0, 35}] (* _Jean-François Alcover_, Jun 01 2018, from Maple *)

%Y Cf. A000108, A287709.

%K nonn

%O 0,5

%A _Alois P. Heinz_, May 31 2017