Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Jun 08 2017 05:19:52
%S 0,1,1,2,3,3,2,1,1,2,3,3,4,5,5,4,5,7,8,7,7,8,7,5,4,5,5,4,3,3,2,1,1,2,
%T 3,3,4,5,5,4,5,7,8,7,7,8,7,5,6,9,11,10,11,13,12,9,9,12,13,11,10,11,9,6
%N Bisection of A287730.
%C a(n)/A287731(n) enumerates all reduced fractions along the Stern-Brocot Tree. See the Serov link below.
%H I. V. Serov, <a href="/A287732/b287732.txt">Table of n, a(n) for n = 1..8192</a>
%H I. V. Serov, <a href="/A287732/a287732_1.png">OEIS: The Stern-Brocot Tree as Sequence A287732/A287731</a>
%H N. J. A. Sloane, <a href="/stern_brocot.html">Stern-Brocot or Farey Tree</a>
%H <a href="/index/Fo#fraction_trees">Index entries for fraction trees</a>
%H <a href="/index/St#Stern">Index entries for sequences related to Stern's sequences</a>
%F a(n) = A287730(2*n-1), n > 0.
%F a(n) = A287730(n-1) + A287730(n), n > 0.
%F a(n) = A007306(n) - A287732(n).
%F Consider for n > 1 the binary expansion b(1:t) of n-1 without the leading 1.
%F Recurse: c=s=1; for j=1:t {if b(t-j+1) == mod(t,2) s = s+c; else c = c+s;}
%F Then: c = A287731(n) and s = a(n);
%o (Python)
%o def c(n): return 1 if n==1 else s(n/2) if n%2==0 else s((n - 1)/2) + s((n + 1)/2)
%o def s(n): return 0 if n==1 else c(n/2) if n%2==0 else c((n - 1)/2) + c((n + 1)/2)
%o def a(n): return s(2*n - 1) # _Indranil Ghosh_, Jun 08 2017
%Y Cf. A002487, A007306, A287729, A287730, A287731.
%K nonn,frac
%O 1,4
%A _I. V. Serov_, Jun 01 2017