login
Number of partitions of n into distinct tetranacci numbers (with a single type of 1) (A000078).
4

%I #31 Jun 05 2017 17:34:19

%S 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,1,1,1,

%T 1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,1,1,

%U 1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,2

%N Number of partitions of n into distinct tetranacci numbers (with a single type of 1) (A000078).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Fibonaccin-StepNumber.html">Fibonacci n-Step Number</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TetranacciNumber.html">Tetranacci Number</a>

%H <a href="/index/Par#part">Index entries for related partition-counting sequences</a>

%F G.f.: Product_{k>=4} (1 + x^A000078(k)).

%e a(15) = 2 because we have [15] and [8, 4, 2, 1].

%Y Cf. A000078, A000119, A000121, A003263, A117546, A288120.

%K nonn

%O 0,16

%A _Ilya Gutkovskiy_, Jun 05 2017