Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Dec 24 2020 06:38:57
%S 1,0,0,2,4,0,320,1322496,339930624
%N Number of reduced pairs of orthogonal diagonal Latin squares of order n.
%C A pair of orthogonal diagonal Latin squares is reduced if their first rows are in natural order.
%H E. I. Vatutin, <a href="http://forum.boinc.ru/default.aspx?g=posts&m=87882#post87882">Discussion about properties of diagonal Latin squares at forum.boinc.ru</a> (in Russian)
%H E. I. Vatutin, <a href="http://forum.boinc.ru/default.aspx?g=posts&m=87885#post87885">Discussion about properties of diagonal Latin squares at forum.boinc.ru, continuation</a> (in Russian)
%H Eduard I. Vatutin, Stepan E. Kochemazov, Oleq S. Zaikin, Maxim O. Manzuk, Natalia N. Nikitina, Vitaly S. Titov, <a href="https://doi.org/10.25045/jpit.v10.i2.01">Central symmetry properties for diagonal Latin squares</a>, Problems of Information Technology (2019) No. 2, 3-8.
%H E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, M. O. Manzuk, V. S. Titov, <a href="http://evatutin.narod.ru/evatutin_co_ls_odls_cnt_1_7.pdf">Combinatorial characteristics estimating for pairs of orthogonal diagonal Latin squares</a>, Multicore processors, parallel programming, FPGA, signal processing systems (2017), pp. 104-111 (in Russian).
%H Eduard I. Vatutin, Natalia N. Nikitina, Maxim O. Manzuk, <a href="https://vk.com/wall162891802_1485">First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch</a> (in Russian).
%H Eduard I. Vatutin, Natalia N. Nikitina, Maxim O. Manzuk, <a href="https://vk.com/wall162891802_1496">Additional calculated results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch</a> (in Russian).
%H <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>
%F a(n) = A339926(n) / (n!)^2. - _Eduard I. Vatutin_, Dec 24 2020
%Y Cf. A266166, A339926.
%K nonn,more
%O 1,4
%A _Eduard I. Vatutin_, May 29 2017
%E a(8) added by _Eduard I. Vatutin_, Jan 02 2018
%E a(9) added by _Eduard I. Vatutin_, Dec 22 2020