login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. (x + x^2)/(1 + 3*x^2).
1

%I #46 Jul 15 2024 21:13:51

%S 0,1,1,-3,-3,9,9,-27,-27,81,81,-243,-243,729,729,-2187,-2187,6561,

%T 6561,-19683,-19683,59049,59049,-177147,-177147,531441,531441,

%U -1594323,-1594323,4782969,4782969,-14348907,-14348907,43046721,43046721,-129140163,-129140163,387420489

%N Expansion of g.f. (x + x^2)/(1 + 3*x^2).

%C This is the inverse binomial transform of A157241.

%C Successive differences of A157241 begin:

%C 0, 1, 3, 3, -5, -21, -21, 43, 171, 171, ... = A157241

%C 1, 2, 0, -8, -16, 0, 64, 128, 0, -512, ... = A088138

%C 1, -2, -8, -8, 16, 64, 64, -128, -512, -512, ... = A138230

%C -3, -6, 0, 24, 48, 0, -192, -384, 0, 1536, ...

%C -3, 6, 24, 24, -48, -192, -192, 384, 1536, 1536, ...

%C 9, 18, 0, -72, -144, 0, 576, 1152, 0, -4608, ...

%C 9, -18, -72 -72, 144, 576, 576, -1152, -4608, -4608, ...

%C ...

%C a(n) is the n-th term of the first column.

%C Successive differences of a(n) begin:

%C 0, 1, 1, -3, -3, 9, 9, -27, -27, 81, ...

%C 1, 0, -4, 0, 12, 0, -36, 0, 108, 0, ...

%C -1, -4, 4, 12, -12, -36, 36, 108, -108, -324, ...

%C -3, 8, 8, -24, -24, 72, 72, -216, -216, 648, ...

%C 11, 0, -32, 0, 96, 0, -288, 0, 864, 0, ...

%C -11, -32, 32, 96, -96, -288, 288, 864, -864, -2592, ...

%C -21, 64, 64, -192, -192, 576, 576, -1728, -1728, 5184, ...

%C 85, 0, -256, 0, 768, 0, -2304, 0, 6912, 0, ...

%C ...

%C First column appears to be a subsequence of Jacobsthal numbers A001045 (the trisection A082311 is missing), second column is A104538, and third column is A137717.

%C a(n) = A128019(n-2) for n > 2. - _Georg Fischer_, Oct 23 2018

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0, -3).

%F a(n) = -3*a(n-2) for n > 2.

%F E.g.f.: (1 - cos(sqrt(3)*x) + sqrt(3)*sin(sqrt(3)*x))/3. - _Stefano Spezia_, Jul 15 2024

%t Join[{0}, LinearRecurrence[{0, -3}, {1, 1}, 40]]

%t (* or, computation from b = A157241 : *)

%t b[n_] := (Switch[Mod[n, 3], 0, (-1)^((n + 3)/3), 1, (-1)^((n + 5)/3), 2, (-1)^((n + 4)/3)*2]*2^n + 1)/3; tb = Table[b[n], {n, 0, 40}]; Table[ Differences[tb, n], {n, 0, 40}][[All, 1]]

%o (PARI) concat([0], Vec((x + x^2)/(1 + 3*x^2) + O(x^40))) \\ _Felix Fröhlich_, Oct 23 2018

%Y Cf. A001045, A082311, A088138, A104538, A108411, A128019, A137717, A138230, A140429, A157241.

%K sign,easy

%O 0,4

%A _Jean-François Alcover_ and _Paul Curtz_, Jul 19 2017