Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Oct 18 2018 15:47:06
%S 1,1,1,1,1,0,1,1,2,0,1,1,2,3,0,1,1,2,5,4,0,1,1,2,5,12,5,0,1,1,2,5,15,
%T 27,6,0,1,1,2,5,15,46,58,7,0,1,1,2,5,15,52,139,121,8,0,1,1,2,5,15,52,
%U 187,410,248,9,0,1,1,2,5,15,52,203,677,1189,503,10,0
%N Number A(n,k) of set partitions of [n] such that all absolute differences between least elements of consecutive blocks and between consecutive elements within the blocks are not larger than k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
%H Alois P. Heinz, <a href="/A287417/b287417.txt">Antidiagonals n = 0..40, flattened</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>
%F A(n,k) = Sum_{j=0..k} A287416(n,j).
%e A(5,3) = 46 = 52 - 6 = A000110(5) - 6 counts all set partitions of [5] except: 1234|5, 15|234, 15|23|4, 15|24|3, 15|2|34, 15|2|3|4.
%e Square array A(n,k) begins:
%e 1, 1, 1, 1, 1, 1, 1, 1, ...
%e 1, 1, 1, 1, 1, 1, 1, 1, ...
%e 0, 2, 2, 2, 2, 2, 2, 2, ...
%e 0, 3, 5, 5, 5, 5, 5, 5, ...
%e 0, 4, 12, 15, 15, 15, 15, 15, ...
%e 0, 5, 27, 46, 52, 52, 52, 52, ...
%e 0, 6, 58, 139, 187, 203, 203, 203, ...
%e 0, 7, 121, 410, 677, 824, 877, 877, ...
%p b:= proc(n, k, l, t) option remember; `if`(n<1, 1, `if`(t-n>k, 0,
%p b(n-1, k, map(x-> `if`(x-n>=k, [][], x), [l[], n]), n)) +add(
%p b(n-1, k, sort(map(x-> `if`(x-n>=k, [][], x), subsop(j=n, l))),
%p `if`(t-n>k, infinity, t)), j=1..nops(l)))
%p end:
%p A:= (n, k)-> b(n, min(k, n-1), [], n):
%p seq(seq(A(n, d-n), n=0..d), d=0..14);
%t b[n_, k_, l_, t_] := b[n, k, l, t] = If[n < 1, 1, If[t - n > k, 0, b[n - 1, k, If[# - n >= k, Nothing, #]& /@ Append[l, n], n]] + Sum[b[n - 1, k, Sort[If[# - n >= k, Nothing, #]& /@ ReplacePart[l, j -> n]], If[t - n > k, Infinity, t]], {j, 1, Length[l]}]];
%t A[n_, k_] := b[n, Min[k, n - 1], {}, n];
%t Table[A[n, d - n], {d, 0, 14}, { n, 0, d}] // Flatten (* _Jean-François Alcover_, May 24 2018, translated from Maple *)
%Y Columns k=1-10 give: A028310, A000325, A287582, A287583, A287584, A287585, A287586, A287587, A287588, A287589.
%Y Main diagonal gives A000110.
%Y Cf. A287214, A287216, A287416, A287641.
%K nonn,tabl
%O 0,9
%A _Alois P. Heinz_, May 24 2017