The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A287335 Nonnegative numbers k such that 3*k + 2 is a cube. 3
 2, 41, 170, 443, 914, 1637, 2666, 4055, 5858, 8129, 10922, 14291, 18290, 22973, 28394, 34607, 41666, 49625, 58538, 68459, 79442, 91541, 104810, 119303, 135074, 152177, 170666, 190595, 212018, 234989, 259562, 285791, 313730, 343433, 374954, 408347, 443666, 480965 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Corresponding cubes are listed in A016791. Primes in the sequence: 2, 41, 443, 1637, 22973, 34607, 91541, 234989, ... LINKS Bruno Berselli, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA O.g.f.: x*(2 + 33*x + 18*x^2 + x^3)/(1 - x)^4. E.g.f.: 1 - (1 - 3*x - 18*x^2 - 9*x^3)*exp(x). a(n) = 9*n^3 - 9*n^2 + 3*n - 1. a(n) = A131476(3*n-1) = A212069(3*n-1). MATHEMATICA Table[9 n^3 - 9 n^2 + 3 n - 1, {n, 0, 40}] LinearRecurrence[{4, -6, 4, -1}, {2, 41, 170, 443}, 40] (* Harvey P. Dale, Aug 28 2021 *) PROG (Python) [9*n**3-9*n**2+3*n-1 for n in range(1, 40)] (Sage) [9*n^3-9*n^2+3*n-1 for n in (1..40)] (Maxima) makelist(9*n^3-9*n^2+3*n-1, n, 1, 40); (Magma) [9*n^3-9*n^2+3*n-1: n in [1..40]]; CROSSREFS Subsequence of A047292. Cf. A016791, A131476, A212069. Cf. A244728: nonnegative k such that 3*k is a cube. Cf. A121628: nonnegative k such that 3*k + 1 is a cube. Sequence in context: A007533 A088565 A090195 * A212837 A063271 A142160 Adjacent sequences: A287332 A287333 A287334 * A287336 A287337 A287338 KEYWORD nonn,easy AUTHOR Bruno Berselli, May 23 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 13:44 EDT 2023. Contains 365647 sequences. (Running on oeis4.)